LEADER 04920nam 22006135 450 001 9910300143303321 005 20220330173333.0 010 $a3-0348-0612-4 024 7 $a10.1007/978-3-0348-0612-1 035 $a(CKB)3710000000025636 035 $a(EBL)1538779 035 $a(SSID)ssj0001049623 035 $a(PQKBManifestationID)11623134 035 $a(PQKBTitleCode)TC0001049623 035 $a(PQKBWorkID)11034079 035 $a(PQKB)11778828 035 $a(DE-He213)978-3-0348-0612-1 035 $a(MiAaPQ)EBC1538779 035 $a(PPN)176102914 035 $a(EXLCZ)993710000000025636 100 $a20131008d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSeparable type representations of matrices and fast algorithms $evolume 2 eigenvalue method /$fby Yuli Eidelman, Israel Gohberg, Iulian Haimovici 205 $a1st ed. 2014. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2014. 215 $a1 online resource (358 p.) 225 1 $aOperator Theory: Advances and Applications,$x0255-0156 ;$v235 300 $aDescription based upon print version of record. 311 $a3-0348-0611-6 327 $aPart 5. The eigenvalue structure of order one quasiseparable matrices -- 21. Quasiseparable of order one matrices. Characteristic polynomials -- 22. Eigenvalues with geometric multiplicity one -- 23. Kernels of quasiseparable of order one matrices -- 24. Multiple eigenvalues -- Part 6. Divide and conquer method for eigenproblems -- 25. Divide step -- 26. Conquer step and rational matrix functions eigenproblem -- 27. Complete algorithm for Hermitian matrices -- 28. Complete algorithm for unitary Hessenberg matrices -- Part 7. Algorithms for qr iterations and for reduction to Hessenberg form -- 29. The QR iteration method for eigenvalues -- 30. The reduction to Hessenberg form -- 31. The implicit QR iteration method for eigenvalues of upper Hessenberg matrices -- Part 8. QR iterations for companion matrices -- 32. Companion and unitary matrices -- 33. Explicit methods -- 34. Implicit methods with compression -- 35. The factorization based implicit method -- 36. Implicit algorithms based on the QR representation -- Bibliography.  . 330 $aThis two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The primary focus is on fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work examines algorithms of multiplication, inversion and description of eigenstructure and includes a wealth of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods for computing eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms also being derived for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable representations of any order is studied in the third part. This method is then used in the last part in order to provide a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and accessible style, the text will be a valuable resource for engineers, scientists, numerical analysts, computer scientists and mathematicians alike. 410 0$aOperator Theory: Advances and Applications,$x0255-0156 ;$v235 606 $aMatrix theory 606 $aAlgebra 606 $aNumerical analysis 606 $aLinear and Multilinear Algebras, Matrix Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11094 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 615 0$aMatrix theory. 615 0$aAlgebra. 615 0$aNumerical analysis. 615 14$aLinear and Multilinear Algebras, Matrix Theory. 615 24$aNumerical Analysis. 676 $a512.9434 700 $aEidelman$b Yuli$4aut$4http://id.loc.gov/vocabulary/relators/aut$0315664 702 $aGohberg$b Israel$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aHaimovici$b Iulian$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300143303321 996 $aSeparable Type Representations of Matrices and Fast Algorithms$92504760 997 $aUNINA