LEADER 01150nam0-2200397---450- 001 990000916180203316 005 20020522174800.0 010 $a0-07-115978-9 035 $a0091618 035 $aUSA010091618 035 $a(ALEPH)000091618USA01 035 $a0091618 100 $a20020128d1998----km|y0itay0103----ba 101 0 $aeng 102 $aUS 105 $aa|||z|||001yy 200 1 $aCombustion engineering$fGary L. Borman, Kenneth W. Ragland 210 $aBoston [etc.]$cWCB$cMc Graw-Hill$dc1998 215 $aXXV, 613 p.$cill.$d24 cm 410 0$12001 606 $aCombustione 676 $a621.4023 700 1$aBORMAN,$bGary L.$022841 701 1$aRAGLAND,$bKenneth W.$022842 801 0$aIT$bsalbc$gISBD 912 $a990000916180203316 951 $a621.402 3BOR$b16689 Ing.$c621$d00080745 959 $aBK 969 $aTEC 979 $aSTELLA$b10$c20020128$lUSA01$h1653 979 $aPATRY$b90$c20020325$lUSA01$h1828 979 $c20020403$lUSA01$h1735 979 $aJOHNNY$b90$c20020522$lUSA01$h1748 979 $aPATRY$b90$c20040406$lUSA01$h1703 996 $aCombustion engineering$9971041 997 $aUNISA LEADER 03394nam 22006735 450 001 9910300142103321 005 20250402120446.0 010 $a3-642-45138-1 024 7 $a10.1007/978-3-642-45138-6 035 $a(CKB)3710000000078872 035 $a(EBL)1636654 035 $a(OCoLC)871176279 035 $a(SSID)ssj0001090830 035 $a(PQKBManifestationID)11648234 035 $a(PQKBTitleCode)TC0001090830 035 $a(PQKBWorkID)11024785 035 $a(PQKB)10789611 035 $a(MiAaPQ)EBC1636654 035 $a(DE-He213)978-3-642-45138-6 035 $a(PPN)176117792 035 $a(EXLCZ)993710000000078872 100 $a20131220d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGeneralized Hyperbolic Secant Distributions $eWith Applications to Finance /$fby Matthias J. Fischer 205 $a1st ed. 2014. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2014. 215 $a1 online resource (75 p.) 225 1 $aSpringerBriefs in Statistics,$x2191-5458 300 $aDescription based upon print version of record. 311 08$a3-642-45137-3 320 $aIncludes bibliographical references at the end of each chapters. 327 $aPreface -- Hyperbolic Secant Distributions -- The GSH Distribution Family and Skew Versions -- The NEF-GHS or Meixner Distribution Family -- The BHS Distribution Family -- The SHS and SASHS Distribution Family -- Application to Finance -- R-Code: Fitting a BHS Distribution. 330 $aAmong the symmetrical distributions with an infinite domain, the most popular alternative to the normal variant is the logistic distribution as well as the Laplace or the double exponential distribution, which was first introduced in 1774. Occasionally, the Cauchy distribution is also used. Surprisingly, the hyperbolic secant distribution has led a charmed life, although Manoukian and Nadeau had already stated in 1988 that ?... the hyperbolic-secant distribution ... has not received sufficient attention in the published literature, and may be useful for students and practitioners.? During the last few years, however, several generalizations of the hyperbolic secant distribution have become popular in the context of financial return data because of its excellent fit. Nearly all of them are summarized within this SpringerBrief. 410 0$aSpringerBriefs in Statistics,$x2191-5458 606 $aStatistics 606 $aStatistics 606 $aSocial sciences$xMathematics 606 $aStatistical Theory and Methods 606 $aStatistics in Business, Management, Economics, Finance, Insurance 606 $aMathematics in Business, Economics and Finance 615 0$aStatistics. 615 0$aStatistics. 615 0$aSocial sciences$xMathematics. 615 14$aStatistical Theory and Methods. 615 24$aStatistics in Business, Management, Economics, Finance, Insurance. 615 24$aMathematics in Business, Economics and Finance. 676 $a332 700 $aFischer$b Matthias J$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721213 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300142103321 996 $aGeneralized hyperbolic secant distributions$91409912 997 $aUNINA