LEADER 00944nam0-22002771i-450- 001 990000062640403321 035 $a000006264 035 $aFED01000006264 035 $a(Aleph)000006264FED01 035 $a000006264 100 $a20011111d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a<>energie electrique de demain$ele probleme de la transformation directe de l'energie chimique potentielle en energieelectrique$ela pile au charbon, la pile a gaz et la pile aux hydrocarbures$etheorie et realisation$fAuguste Berthier. 210 $aParis$cDesforges-Girardot et C.$d1929 215 $a236 p.$cill.$d24 cm 676 $a621.35 700 1$aBerthier,$bAuguste$04259 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000062640403321 952 $a13 L 12 21$b7958$fFINBC 959 $aFINBC 996 $aEnergie electrique de demain$9111343 997 $aUNINA DB $aING01 LEADER 03807nam 22006855 450 001 9910300139503321 005 20251113191825.0 010 $a3-319-91998-9 024 7 $a10.1007/978-3-319-91998-0 035 $a(CKB)4100000006519778 035 $a(DE-He213)978-3-319-91998-0 035 $a(MiAaPQ)EBC6226828 035 $z(PPN)258851155 035 $a(PPN)230539300 035 $a(EXLCZ)994100000006519778 100 $a20180907d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgebras and Representation Theory /$fby Karin Erdmann, Thorsten Holm 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (IX, 298 p. 59 illus.) 225 1 $aSpringer Undergraduate Mathematics Series,$x2197-4144 311 08$a3-319-91997-0 327 $a1 Introduction -- 2 Algebras -- 3 Modules and Representations -- 4 Simple Modules in the Jordan-Hölder Theorem -- 5 Semisimple Modules and Semisimple Algebras -- 6 The Structure of Semisimple ALgebras - The Artin-Wedderburn Theorem -- 7 Semisimple Group Algebras and Maschke's Theorem -- 8 Indecomposable Modules -- 9 Representation Type -- 10 Representations of Quivers -- 11 Diagrams and Roots -- 12 Gabriel's Theorem -- 13 Proofs and Background -- 14 Appendix A: Induced Modules for Group Algebras -- 15 Appendix B: Solutions to Selected Exercises -- Index. 330 $aThis carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses. 410 0$aSpringer Undergraduate Mathematics Series,$x2197-4144 606 $aAssociative rings 606 $aAssociative algebras 606 $aCommutative algebra 606 $aCommutative rings 606 $aGroup theory 606 $aAlgebra, Homological 606 $aAssociative Rings and Algebras 606 $aCommutative Rings and Algebras 606 $aGroup Theory and Generalizations 606 $aCategory Theory, Homological Algebra 615 0$aAssociative rings. 615 0$aAssociative algebras. 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aGroup theory. 615 0$aAlgebra, Homological. 615 14$aAssociative Rings and Algebras. 615 24$aCommutative Rings and Algebras. 615 24$aGroup Theory and Generalizations. 615 24$aCategory Theory, Homological Algebra. 676 $a512 700 $aErdmann$b Karin$4aut$4http://id.loc.gov/vocabulary/relators/aut$059925 702 $aHolm$b Thorsten$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300139503321 996 $aAlgebras and Representation Theory$92053546 997 $aUNINA