LEADER 03806nam 22005775 450 001 9910300123103321 005 20200705110710.0 010 $a3-319-73954-9 024 7 $a10.1007/978-3-319-73954-0 035 $a(CKB)4100000003359308 035 $a(MiAaPQ)EBC5347109 035 $a(DE-He213)978-3-319-73954-0 035 $a(PPN)226698718 035 $a(EXLCZ)994100000003359308 100 $a20180412d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales /$fby Svetlin G. Georgiev 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (364 pages) 311 $a3-319-73953-0 327 $a1. Elements of the Time Scale Calculus -- 2. The Laplace Transform on Time Scales -- 3. The Convolution on Time Scales -- 4. The Riemann-Liouville Fractional D-Integral and the Riemann-Liouville Fractional D-Derivative on Time Scales -- 5. Cauchy Type Problem with the Riemann-Liouville Fractional D-Derivative -- 6. Riemann-Liouville Fractional Dynamic Equations with Constant Coefficients -- 7. The Caputo Fractional D-Derivative on Time Scales -- 8. Cauchy Type Problem with the Caputo Fractional D-Derivative -- 9. Caputo Fractional Dynamic Equations with Constant Coefficients -- Appendix: The Gamma Function -- Appendix: The Gamma Function -- Index. 330 $aPedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger?s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. . 606 $aCalculus 606 $aMathematical physics 606 $aIntegral transforms 606 $aOperational calculus 606 $aMeasure theory 606 $aCalculus$3https://scigraph.springernature.com/ontologies/product-market-codes/M12220 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aIntegral Transforms, Operational Calculus$3https://scigraph.springernature.com/ontologies/product-market-codes/M12112 606 $aMeasure and Integration$3https://scigraph.springernature.com/ontologies/product-market-codes/M12120 615 0$aCalculus. 615 0$aMathematical physics. 615 0$aIntegral transforms. 615 0$aOperational calculus. 615 0$aMeasure theory. 615 14$aCalculus. 615 24$aMathematical Physics. 615 24$aIntegral Transforms, Operational Calculus. 615 24$aMeasure and Integration. 676 $a515.83 700 $aGeorgiev$b Svetlin G$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755241 906 $aBOOK 912 $a9910300123103321 996 $aFractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales$91564734 997 $aUNINA