LEADER 03177nam 22005295 450 001 9910300120203321 005 20200704102204.0 010 $a981-13-1598-1 024 7 $a10.1007/978-981-13-1598-5 035 $a(CKB)4100000006675078 035 $a(MiAaPQ)EBC5521386 035 $a(DE-He213)978-981-13-1598-5 035 $z(PPN)25886270X 035 $a(PPN)230535887 035 $a(EXLCZ)994100000006675078 100 $a20180921d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Geometry of Spherically Symmetric Finsler Manifolds /$fby Enli Guo, Xiaohuan Mo 205 $a1st ed. 2018. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2018. 215 $a1 online resource (161 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 311 $a981-13-1597-3 327 $aChapter 1. Spherically Symmetric Finsler Metrics -- Chapter 2. Dually Flat Spherically Symmetric Metrics -- Chapter 3. Spherically Symmetric Metrics of Isotropic Berwald Curvature -- Chapter 4. Spherically Symmetric Douglas Metrics -- Chapter 5. Projectively Flat Spherically Symmetric Metrics -- Chapter 6. Spherically Symmetric Metrics of Scalar Curvature -- Chapter 7. Spherically Symmetric Metrics of Constant Flag Curvature -- Chapter 8. Spherically Symmetric W-quadratic Metrics. . 330 $aThis book presents properties, examples, rigidity theorems and classification results of such Finsler metrics. In particular, this book introduces how to investigate spherically symmetric Finsler geometry using ODE or PDE methods. Spherically symmetric Finsler geometry is a subject that concerns domains in R^n with spherically symmetric metrics. Recently, a significant progress has been made in studying Riemannian-Finsler geometry. However, constructing nice examples of Finsler metrics turn out to be very difficult. In spherically symmetric Finsler geometry, we find many nice examples with special curvature properties using PDE technique. The studying of spherically symmetric geometry shows closed relation among geometry, group and equation. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aGeometry, Differential 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 615 0$aGeometry, Differential. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 14$aDifferential Geometry. 615 24$aGlobal Analysis and Analysis on Manifolds. 676 $a516.375 700 $aGuo$b Enli$4aut$4http://id.loc.gov/vocabulary/relators/aut$0768001 702 $aMo$b Xiaohuan$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300120203321 996 $aThe Geometry of Spherically Symmetric Finsler Manifolds$92272619 997 $aUNINA