LEADER 01194nam--2200385---4500 001 990000600150203316 005 20050519135611.0 010 $a0-13-136276-3 035 $a0060015 035 $aUSA010060015 035 $a(ALEPH)000060015USA01 035 $a0060015 100 $a20010830d1988----km-y0ENGy0103----ba 101 $aeng 102 $aUS 200 1 $aClassroom second language development$ea study of classroom interaction and language acquisition$fRod Ellis 210 $aNew York$cPrentice Hall$d1988 215 $aIX, 233 p.$d21 cm 225 2 $aLanguage teaching methodology 410 $12001$aLanguage teaching methodology 606 $aLingue$xInsegnamento 606 $aLingue$xApprendimento 676 $a418.0071 700 1$aELLIS,$bRod$0168759 801 0$aIT$bsalbc$gISBD 912 $a990000600150203316 951 $aII.4. 410(IL i II 78)$b67052 LM$cIL i II 959 $aBK 969 $aECO 979 $aPATTY$b90$c20010830$lUSA01$h1140 979 $c20020403$lUSA01$h1709 979 $aPATRY$b90$c20040406$lUSA01$h1642 979 $aCOPAT2$b90$c20050519$lUSA01$h1356 996 $aClassroom second language development$9882312 997 $aUNISA LEADER 02414nam 22004935 450 001 9910300117303321 005 20251113210142.0 010 $a3-319-92117-7 024 7 $a10.1007/978-3-319-92117-4 035 $a(CKB)3810000000358848 035 $a(DE-He213)978-3-319-92117-4 035 $a(MiAaPQ)EBC5501045 035 $a(PPN)229498108 035 $a(EXLCZ)993810000000358848 100 $a20180628d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStructurally Unstable Quadratic Vector Fields of Codimension One /$fby Joan C. Artés, Jaume Llibre, Alex C. Rezende 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2018. 215 $a1 online resource (VI, 267 p. 362 illus., 1 illus. in color.) 311 08$a3-319-92116-9 320 $aIncludes bibliographical references. 327 $aIntroduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography. 330 $aOriginating from research in the qualitative theory of ordinary differential equations, this book follows the authors? work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. . 606 $aDifferential equations 606 $aDynamical systems 606 $aDifferential Equations 606 $aDynamical Systems 615 0$aDifferential equations. 615 0$aDynamical systems. 615 14$aDifferential Equations. 615 24$aDynamical Systems. 676 $a515.352 700 $aArtés$b Joan C$4aut$4http://id.loc.gov/vocabulary/relators/aut$0501630 702 $aLlibre$b Jaume$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRezende$b Alex C$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300117303321 996 $aStructurally Unstable Quadratic Vector Fields of Codimension One$91963844 997 $aUNINA