LEADER 02414nam 22004935 450 001 9910300117303321 005 20251113210142.0 010 $a3-319-92117-7 024 7 $a10.1007/978-3-319-92117-4 035 $a(CKB)3810000000358848 035 $a(DE-He213)978-3-319-92117-4 035 $a(MiAaPQ)EBC5501045 035 $a(PPN)229498108 035 $a(EXLCZ)993810000000358848 100 $a20180628d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStructurally Unstable Quadratic Vector Fields of Codimension One /$fby Joan C. Artés, Jaume Llibre, Alex C. Rezende 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2018. 215 $a1 online resource (VI, 267 p. 362 illus., 1 illus. in color.) 311 08$a3-319-92116-9 320 $aIncludes bibliographical references. 327 $aIntroduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography. 330 $aOriginating from research in the qualitative theory of ordinary differential equations, this book follows the authors? work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. . 606 $aDifferential equations 606 $aDynamical systems 606 $aDifferential Equations 606 $aDynamical Systems 615 0$aDifferential equations. 615 0$aDynamical systems. 615 14$aDifferential Equations. 615 24$aDynamical Systems. 676 $a515.352 700 $aArtés$b Joan C$4aut$4http://id.loc.gov/vocabulary/relators/aut$0501630 702 $aLlibre$b Jaume$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRezende$b Alex C$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300117303321 996 $aStructurally Unstable Quadratic Vector Fields of Codimension One$91963844 997 $aUNINA