LEADER 01082nam--2200373---450- 001 990006015910203316 005 20150312113950.0 010 $a2-503-50253-9 035 $a000601591 035 $aUSA01000601591 035 $a(ALEPH)000601591USA01 035 $a000601591 100 $a20150312d1992----km-y0itay50------ba 101 $afre 102 $aBE 105 $a||||||||001yy 200 1 $aRépertoire des bibliothèques ed des catalogues de manuscrits arméniens$fpar Bernard Coulie 210 $aTurnhout$cBrepols$d1992 215 $aXIII,265 p.$d26 cm 225 2 $aCorpus Christianorum 410 0$12001$aCorpus Christianorum 454 1$12001 461 1$1001-------$12001 606 0 $aManoscritti$xCataloghi$2BNCF 676 $a016 702 1$aCOULIE,$bBernard 801 0$aIT$bsalbc$gISBD 912 $a990006015910203316 951 $aPC 50$b5941 DSA 959 $aBK 969 $aDSA 979 $aDSA$b90$c20150312$lUSA01$h1139 996 $aRépertoire des bibliothèques ed des catalogues de manuscrits arméniens$91077184 997 $aUNISA LEADER 02787nam 22004815 450 001 9910300114503321 005 20200704051022.0 010 $a3-319-91512-6 024 7 $a10.1007/978-3-319-91512-8 035 $a(CKB)3810000000358847 035 $a(DE-He213)978-3-319-91512-8 035 $a(MiAaPQ)EBC6312655 035 $a(PPN)22949496X 035 $a(EXLCZ)993810000000358847 100 $a20180609d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFunctional Analysis $eAn Introductory Course /$fby Sergei Ovchinnikov 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XII, 205 p. 13 illus.) 225 1 $aUniversitext,$x0172-5939 311 $a3-319-91511-8 320 $aIncludes bibliographical references and index. 327 $aPreface -- 1. Preliminaries -- 2. Metric Spaces -- 3. Special Spaces -- 4. Normed Spaces -- 5. Linear Functionals -- 6. Fundamental Theorems -- 7. Hilbert Spaces -- A. Hilbert Spaces L2(J) -- References -- Index. 330 $aThis concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Boundedness Theorem, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text. Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course. . 410 0$aUniversitext,$x0172-5939 606 $aFunctional analysis 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aFunctional analysis. 615 14$aFunctional Analysis. 676 $a515.7 700 $aOvchinnikov$b Sergei$4aut$4http://id.loc.gov/vocabulary/relators/aut$0514053 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300114503321 996 $aFunctional Analysis$91564740 997 $aUNINA