LEADER 03299nam 22005535 450 001 9910300110903321 005 20230810231725.0 010 $a981-13-1534-5 024 7 $a10.1007/978-981-13-1534-3 035 $a(CKB)4100000006999490 035 $a(MiAaPQ)EBC5543530 035 $a(DE-He213)978-981-13-1534-3 035 $a(PPN)231458630 035 $a(EXLCZ)994100000006999490 100 $a20181006d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStatistical Analysis of Microbiome Data with R /$fby Yinglin Xia, Jun Sun, Ding-Geng Chen 205 $a1st ed. 2018. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2018. 215 $a1 online resource (518 pages) 225 1 $aICSA Book Series in Statistics,$x2199-0999 311 $a981-13-1533-7 327 $aChapter 1: Introduction to R, RStudio and ggplot2 -- Chapter 2: What are Microbiome Data? -- Chapter 3: Bioinformatic and Statistical Analyses of Microbiome Data -- Chapter 4: Power and Sample Size Calculation in Hypothesis Testing Microbiome Data -- Chapter 5: Microbiome Data Management -- Chapter 6: Exploratory Analysis of Microbiome Data -- Chapter 7: Comparisons of Diversities, OTUs and Taxa among Groups -- Chapter 8: Community Composition Study -- Chapter 9: Modeling Over-dispersed Microbiome Data -- Chapter 10: Linear Regression Modeling metadata -- Chapter 11: Modeling Zero-Inflated Microbiome Data. 330 $aThis unique book addresses the statistical modelling and analysis of microbiome data using cutting-edge R software. It includes real-world data from the authors? research and from the public domain, and discusses the implementation of R for data analysis step by step. The data and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, so that these new methods can be readily applied in their own research. The book also discusses recent developments in statistical modelling and data analysis in microbiome research, as well as the latest advances in next-generation sequencing and big data in methodological development and applications. This timely book will greatly benefit all readers involved in microbiome, ecology and microarray data analyses, as well as other fields of research. 410 0$aICSA Book Series in Statistics,$x2199-0999 606 $aMathematical statistics$xData processing 606 $aBiometry 606 $aBig data 606 $aStatistics and Computing 606 $aBiostatistics 606 $aBig Data 615 0$aMathematical statistics$xData processing. 615 0$aBiometry. 615 0$aBig data. 615 14$aStatistics and Computing. 615 24$aBiostatistics. 615 24$aBig Data. 676 $a579.16 700 $aXia$b Yinglin$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767992 702 $aSun$b Jun$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aChen$b Ding-Geng$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300110903321 996 $aStatistical Analysis of Microbiome Data with R$92182078 997 $aUNINA