LEADER 03177nam 22005415 450 001 9910300109703321 005 20240905094116.0 010 $a9783319770543 010 $a3-319-77054-3 024 7 $a10.1007/978-3-319-77054-3 035 $a(CKB)4100000003359510 035 $a(MiAaPQ)EBC5356110 035 $a(DE-He213)978-3-319-77054-3 035 $z(PPN)258862653 035 $a(PPN)226697347 035 $a(EXLCZ)994100000003359510 100 $a20180421d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFunction spaces with uniform, fine and graph topologies /$fby Robert A. McCoy, Subiman Kundu, Varun Jindal 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d[2018]. 215 $a1 online resource (121 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 311 1 $a9783319770536 311 1 $a3-319-77053-5 320 $aIncludes bibliographical references and index. 327 $aPreface -- Introduction -- 1 Preliminaries -- 2 Metrizability and Completeness Properties of C? (X, Y ) for ? = d, f, g -- 3 Cardinal Functions and Countability Properties -- 4 Connectedness and Path Connectedness of C? (X, Y ) for a Normed Linear Space Y , where ? = d, f, g. - 5 Compactness in C? (X, Y ) for ? = d, f, g. - 6 Spaces of Homeomorphisms -- Bibliography -- List of Symbols -- Index. 330 $aThis book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monograph is to provide an extensive study of the uniform, fine and graph topologies on the space C(X,Y) of all continuous functions from a Tychonoff space X to a metric space (Y,d); and the uniform and fine topologies on the space H(X) of all self-homeomorphisms on a metric space (X,d). The subject matter of this monograph is significant from the theoretical viewpoint, but also has applications in areas such as analysis, approximation theory and differential topology. Written in an accessible style, this book will be of interest to researchers as well as graduate students in this vibrant research area. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aTopology 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 606 $aTopologia$2lemac 606 $aEspais topològics$2lemac 615 0$aTopology. 615 14$aTopology. 615 7$aTopologia 615 7$aEspais topològics 676 $a515.73 700 $aMcCoy$b Robert A$4aut$4http://id.loc.gov/vocabulary/relators/aut$0726138 702 $aKundu$b Subiman$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aJindal$b Varun$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300109703321 996 $aFunction Spaces with Uniform, Fine and Graph Topologies$92240078 997 $aUNINA