LEADER 04375nam 22007575 450 001 9910300107803321 005 20200705055311.0 010 $a3-319-70157-6 024 7 $a10.1007/978-3-319-70157-8 035 $a(CKB)4100000002892091 035 $a(DE-He213)978-3-319-70157-8 035 $a(MiAaPQ)EBC5590991 035 $a(PPN)22555092X 035 $a(EXLCZ)994100000002892091 100 $a20180331d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBuilding Bridges Between Algebra and Topology /$fby Wojciech Chachólski, Tobias Dyckerhoff, John Greenlees, Greg Stevenson ; edited by Dolors Herbera, Wolfgang Pitsch, Santiago Zarzuela 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2018. 215 $a1 online resource (XIII, 225 p.) 225 1 $aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0304 311 $a3-319-70156-8 327 $aHigher Categorical Aspects of Hall Algebras -- Support Theory for Triangulated Categories -- Homotopy Invariant Commutative Algebra over Fields -- Idempotent Symmetries in Algebra and Topology. 330 $aThis volume presents an elaborated version of lecture notes for two advanced courses: (Re)Emerging Methods in Commutative Algebra and Representation Theory and Building Bridges Between Algebra and Topology, held at the CRM in the spring of 2015. Homological algebra is a rich and ubiquitous subject; it is both an active field of research and a widespread toolbox for many mathematicians. Together, these notes introduce recent applications and interactions of homological methods in commutative algebra, representation theory and topology, narrowing the gap between specialists from different areas wishing to acquaint themselves with a rapidly growing field. The covered topics range from a fresh introduction to the growing area of support theory for triangulated categories to the striking consequences of the formulation in the homotopy theory of classical concepts in commutative algebra. Moreover, they also include a higher categories view of Hall algebras and an introduction to the use of idempotent functors in algebra and topology. . 410 0$aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0304 606 $aCommutative algebra 606 $aCommutative rings 606 $aAssociative rings 606 $aRings (Algebra) 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aAlgebraic topology 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 0$aAlgebraic topology. 615 14$aCommutative Rings and Algebras. 615 24$aAssociative Rings and Algebras. 615 24$aCategory Theory, Homological Algebra. 615 24$aAlgebraic Topology. 676 $a512.55 700 $aChachólski$b Wojciech$4aut$4http://id.loc.gov/vocabulary/relators/aut$0903179 702 $aDyckerhoff$b Tobias$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGreenlees$b John$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aStevenson$b Greg$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aHerbera$b Dolors$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPitsch$b Wolfgang$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aZarzuela$b Santiago$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300107803321 996 $aBuilding Bridges Between Algebra and Topology$92018995 997 $aUNINA