LEADER 01115cam0 22002893 450 001 SOB001963 005 20231102090036.0 010 $a8814075638 100 $a20040211d1999 |||||ita|0103 ba 101 $aita 102 $aIT 200 1 $aLiquidazione e cessazione di società ed imprese individuali$easpetti civilistici fiscali e contabili. Aggiornata con la legge 18 febbraio 1999,n.28 di assegnazione dei beni ai soci$fMario Sirtoli 205 $a2a ed. 210 $aMilano$cGiuffrè$d1999 215 $aX,222 p.$d24 cm. 225 2 $aCosa & Come Sezione Società 410 1$1001LAEC00015592$12001 $a*Cosa & Come Sezione Società 700 1$aSirtoli$b, Mario$3AF00004231$4070$0105539 801 0$aIT$bUNISOB$c20231102$gRICA 850 $aUNISOB 852 $aUNISOB$j340|Coll|12|B$m102135 912 $aSOB001963 940 $aM 102 Monografia moderna SBN 941 $aM 957 $a340|Coll|12|B$b000008$gSI$d102135$racquisto$1carrano$2UNISOB$3UNISOB$420111018104108.0$520231102090018.0$6Alfano 996 $aLiquidazione e cessazione di società ed imprese individuali$9626528 997 $aUNISOB LEADER 01080nam0-22003251i-450 001 990008562770403321 005 20240529104712.0 035 $a000856277 035 $aFED01000856277 035 $a(Aleph)000856277FED01 100 $a20071011d1992----km-y0itay0103----ba 101 0 $aita 105 $a--------001yy 200 1 $a<>mozzarella di bufala$eProgetto strategico CNR 'Prodotti alimentari tipici del Mezzogiorno' 210 $aPortici$cUniversità degli Studi di Napoli Federico II, Unità Operativa di Portici$d1992 215 $a69 p.$cill. , tav.$d32 cm 610 0 $aMozzarella 676 $a637.1$v19 712 02$aConsiglio nazionale delle ricerche :$bProgetto strategico Prodotti alimentari tipici del Mezzogiorno 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aLG 912 $a990008562770403321 952 $aA MIC 1594$b7649/2024$fFAGBC 952 $a637.1 MOZ/DIR$b1540$fDMECM 952 $a62 637.13 MOZ$bDEPA 4066$fDAGEA 959 $aFAGBC 959 $aDMECM 959 $aDAGEA 996 $aMozzarella di bufala$9708698 997 $aUNINA LEADER 03844nam 22005055 450 001 9910300106003321 005 20250609110102.0 010 $a981-13-3032-8 024 7 $a10.1007/978-981-13-3032-2 035 $a(CKB)4100000007111070 035 $a(MiAaPQ)EBC5592864 035 $a(DE-He213)978-981-13-3032-2 035 $a(MiAaPQ)EBC6240790 035 $a(EXLCZ)994100000007111070 100 $a20181103d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Periodic Unfolding Method $eTheory and Applications to Partial Differential Problems /$fby Doina Cioranescu, Alain Damlamian, Georges Griso 205 $a1st ed. 2018. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2018. 215 $a1 online resource (513 pages) 225 1 $aContemporary mathematics,$x2364-009X ;$v3$x0271-4132 311 08$a981-13-3031-X 327 $aUnfolding operators in fixed domains -- Advanced topics for unfolding -- Homogenization in fixed domains -- Unfolding operators in perforated domains -- Homogenization in perforated domains -- A Stokes problem in a partially porous medium -- Partial unfolding: a brief primer -- Oscillating boundaries -- Unfolding operators: the case of "small holes" -- Homogenization in domains with "small holes" -- Homogenization of an elastic thin plate -- The scale-splitting operators revisited -- * Strongly oscillating nonhomogeneous Dirichlet condition -- Some sharp error estimates. 330 $aThis is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field. 410 0$aContemporary mathematics,$x2364-009X ;$v3$x0271-4132 606 $aDifferential equations, Partial 606 $aMechanics, Applied 606 $aPartial Differential Equations$3http://scigraph.springernature.com/things/product-market-codes/M12155 606 $aTheoretical and Applied Mechanics$3http://scigraph.springernature.com/things/product-market-codes/T15001 615 0$aDifferential equations, Partial. 615 0$aMechanics, Applied. 615 14$aPartial Differential Equations. 615 24$aTheoretical and Applied Mechanics. 676 $a515.35 700 $aCioranescu$b Doina$4aut$4http://id.loc.gov/vocabulary/relators/aut$042888 702 $aDamlamian$b Alain$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGriso$b Georges$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300106003321 996 $aThe Periodic Unfolding Method$92179952 997 $aUNINA