LEADER 03814nam 22006255 450 001 9910300102803321 005 20200704200325.0 010 $a978-981-13-0146-9 010 $a981-13-0146-8 024 7 $a10.1007/978-981-13-0146-9 035 $a(CKB)4100000004244361 035 $a(DE-He213)978-981-13-0146-9 035 $a(MiAaPQ)EBC5394431 035 $a(PPN)227400232 035 $a(EXLCZ)994100000004244361 100 $a20180512d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeneralized Inverses: Theory and Computations /$fby Guorong Wang, Yimin Wei, Sanzheng Qiao 205 $a1st ed. 2018. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2018. 215 $a1 online resource (XIX, 378 p. 6 illus.) 225 1 $aDevelopments in Mathematics,$x1389-2177 ;$v53 311 $a981-13-0145-X 327 $aEquation Solving Generalized Inverses -- Drazin Inverse -- Generalization of the Cramer's Rule and the Minors of the Generalized Inverses -- Reverse Order and Forward Order Laws for A(2)T,S -- Computational Aspects -- Structured Matrices and Their Generalized Inverses -- Parallel Algorithms for Computing the Generalized Inverses -- Perturbation Analysis of the Moore-Penrose Inverse and the Weighted Moore-Penrose Inverse -- Perturbation Analysis of the Drazin Inverse and the Group Inverse -- Generalized Inverses of Polynomial Matrices -- M-P Inverse of Linear Operators. 330 $aThis book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra. 410 0$aDevelopments in Mathematics,$x1389-2177 ;$v53 606 $aMatrix theory 606 $aAlgebra 606 $aOperator theory 606 $aComputer science$xMathematics 606 $aLinear and Multilinear Algebras, Matrix Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11094 606 $aOperator Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12139 606 $aComputational Mathematics and Numerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M1400X 615 0$aMatrix theory. 615 0$aAlgebra. 615 0$aOperator theory. 615 0$aComputer science$xMathematics. 615 14$aLinear and Multilinear Algebras, Matrix Theory. 615 24$aOperator Theory. 615 24$aComputational Mathematics and Numerical Analysis. 676 $a512.5 700 $aWang$b Guorong$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767977 702 $aWei$b Yimin$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aQiao$b Sanzheng$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300102803321 996 $aGeneralized Inverses: Theory and Computations$92047135 997 $aUNINA