LEADER 03550nam 22007695 450 001 9910299992503321 005 20220413185834.0 010 $a3-319-08690-1 024 7 $a10.1007/978-3-319-08690-3 035 $a(CKB)3710000000202675 035 $a(EBL)1783132 035 $a(OCoLC)889312629 035 $a(SSID)ssj0001296296 035 $a(PQKBManifestationID)11735085 035 $a(PQKBTitleCode)TC0001296296 035 $a(PQKBWorkID)11347538 035 $a(PQKB)11518936 035 $a(MiAaPQ)EBC1783132 035 $a(DE-He213)978-3-319-08690-3 035 $a(PPN)179923978 035 $a(EXLCZ)993710000000202675 100 $a20140717d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aControl of nonholonomic systems: from sub-Riemannian geometry to motion planning /$fby Frédéric Jean 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (112 p.) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 300 $aDescription based upon print version of record. 311 $a3-319-08689-8 320 $aIncludes bibliographical references at the end of each chapters. 327 $a1 Geometry of nonholonomic systems -- 2 First-order theory -- 3 Nonholonomic motion planning -- 4 Appendix A: Composition of flows of vector fields -- 5 Appendix B: The different systems of privileged coordinates. 330 $aNonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aSystem theory 606 $aGeometry, Differential 606 $aArtificial intelligence 606 $aMathematics 606 $aComputer science 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aMathematics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/M00009 606 $aComputer Science, general$3https://scigraph.springernature.com/ontologies/product-market-codes/I00001 615 0$aSystem theory. 615 0$aGeometry, Differential. 615 0$aArtificial intelligence. 615 0$aMathematics. 615 0$aComputer science. 615 14$aSystems Theory, Control. 615 24$aDifferential Geometry. 615 24$aArtificial Intelligence. 615 24$aMathematics, general. 615 24$aComputer Science, general. 676 $a514.74 700 $aJean$b Frédéric$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721265 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299992503321 996 $aControl of nonholonomic systems$91409850 997 $aUNINA