LEADER 04429nam 22009015 450 001 9910299991503321 005 20251230064910.0 010 $a3-642-55361-3 024 7 $a10.1007/978-3-642-55361-5 035 $a(CKB)3710000000134591 035 $a(EBL)1783328 035 $a(SSID)ssj0001274570 035 $a(PQKBManifestationID)11738983 035 $a(PQKBTitleCode)TC0001274570 035 $a(PQKBWorkID)11333026 035 $a(PQKB)11212273 035 $a(MiAaPQ)EBC1783328 035 $a(DE-He213)978-3-642-55361-5 035 $a(PPN)179765116 035 $a(EXLCZ)993710000000134591 100 $a20140617d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebra, Geometry and Mathematical Physics $eAGMP, Mulhouse, France, October 2011 /$fedited by Abdenacer Makhlouf, Eugen Paal, Sergei D. Silvestrov, Alexander Stolin 205 $a1st ed. 2014. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2014. 215 $a1 online resource (680 p.) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v85 300 $aDescription based upon print version of record. 311 08$a1-322-13960-1 311 08$a3-642-55360-5 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aPart I Algebra -- Part II Geometry -- Part III Dynamical Symmetries and Conservation Laws -- Part IV Mathematical Physics and Applications. 330 $aThis book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v85 606 $aAlgebra 606 $aGeometry, Differential 606 $aMathematical physics 606 $aNonassociative rings 606 $aTopological groups 606 $aLie groups 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aAlgebra 606 $aDifferential Geometry 606 $aTheoretical, Mathematical and Computational Physics 606 $aNon-associative Rings and Algebras 606 $aTopological Groups and Lie Groups 606 $aMathematical and Computational Engineering Applications 615 0$aAlgebra. 615 0$aGeometry, Differential. 615 0$aMathematical physics. 615 0$aNonassociative rings. 615 0$aTopological groups. 615 0$aLie groups. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 14$aAlgebra. 615 24$aDifferential Geometry. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aNon-associative Rings and Algebras. 615 24$aTopological Groups and Lie Groups. 615 24$aMathematical and Computational Engineering Applications. 676 $a512.02 702 $aMakhlouf$b Abdenacer$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPaal$b Eugen$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSilvestrov$b Sergei D$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aStolin$b Alexander$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299991503321 996 $aAlgebra, geometry and mathematical physics$91409979 997 $aUNINA