LEADER 01109nam a2200313 i 4500 001 991000950679707536 005 20020507180440.0 008 980720s1997 us ||| | eng 020 $a0471130176 035 $ab10780208-39ule_inst 035 $aLE01304773$9ExL 040 $aDip.to Matematica$beng 082 0 $a512.942 084 $aAMS 12-01 084 $aAMS 14-01 100 1 $aShurman, Jerry Michael$0303262 245 10$aGeometry of the quintic /$cJerry Shurman ; with illustrations by Josh Levenberg 260 $aNew York :$bJ. Wiley & Sons,$cc1997 300 $axi, 200 p. :$bill. ;$c26 cm. 500 $a"A Wiley-Interscience publication." 500 $aIncludes bibliographical references and index 650 4$aQuintic curves 650 4$aQuintic equations 907 $a.b10780208$b21-09-06$c28-06-02 912 $a991000950679707536 945 $aLE013 12-XX SHU11 (1997)$g1$i2013000101507$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i1087964x$z28-06-02 996 $aGeometry of the quintic$9921861 997 $aUNISALENTO 998 $ale013$b01-01-98$cm$da $e-$feng$gus $h0$i1 LEADER 01879oam 2200481zu 450 001 9910872789603321 005 20241212214751.0 035 $a(CKB)111026746701402 035 $a(SSID)ssj0000393849 035 $a(PQKBManifestationID)12080956 035 $a(PQKBTitleCode)TC0000393849 035 $a(PQKBWorkID)10379734 035 $a(PQKB)11597186 035 $a(EXLCZ)99111026746701402 100 $a20160829d2000 uy 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 10$aIEEE Workshop on Computer Vision Beyond the Visible Spectrum : Methods and Applications : proceedings, 16 June 2000, Hilton Head, South Carolina 210 31$a[Place of publication not identified]$cIEEE Computer Society$d2000 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9780769506401 311 08$a0769506402 327 $aSection A. Infrared identification -- section B. Object recognition -- section C. Synthetic aperture radar image analysis -- section D. Infrared image analysis. 606 $aComputer vision$vCongresses 606 $aInfrared detectors$vCongresses 606 $aSynthetic aperture radar$vCongresses 606 $aEngineering & Applied Sciences$2HILCC 606 $aApplied Physics$2HILCC 615 0$aComputer vision 615 0$aInfrared detectors 615 0$aSynthetic aperture radar 615 7$aEngineering & Applied Sciences 615 7$aApplied Physics 676 $a006.3/7 712 02$aIEEE Computer Society 712 02$aIEEE Computer Society Technical Committee on Pattern Analysis and Machine Intelligence. 801 0$bPQKB 906 $aPROCEEDING 912 $a9910872789603321 996 $aIEEE Workshop on Computer Vision Beyond the Visible Spectrum : Methods and Applications : proceedings, 16 June 2000, Hilton Head, South Carolina$92373274 997 $aUNINA LEADER 04111nam 22007935 450 001 9910299989803321 005 20200702162406.0 010 $a1-4471-6464-4 024 7 $a10.1007/978-1-4471-6464-7 035 $a(CKB)3710000000143766 035 $a(EBL)1781968 035 $a(SSID)ssj0001276063 035 $a(PQKBManifestationID)11951246 035 $a(PQKBTitleCode)TC0001276063 035 $a(PQKBWorkID)11239195 035 $a(PQKB)10346409 035 $a(DE-He213)978-1-4471-6464-7 035 $a(MiAaPQ)EBC6312976 035 $a(MiAaPQ)EBC1781968 035 $a(Au-PeEL)EBL1781968 035 $a(CaPaEBR)ebr10983297 035 $a(OCoLC)881476472 035 $a(PPN)179767097 035 $a(EXLCZ)993710000000143766 100 $a20140610d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHypergeometric Summation $eAn Algorithmic Approach to Summation and Special Function Identities /$fby Wolfram Koepf 205 $a2nd ed. 2014. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d2014. 215 $a1 online resource (290 p.) 225 1 $aUniversitext,$x0172-5939 300 $aDescription based upon print version of record. 311 $a1-4471-6463-6 327 $aIntroduction -- The Gamma Function -- Hypergeometric Identities -- Hypergeometric Database -- Holonomic Recurrence Equations -- Gosper?s Algorithm -- The Wilf-Zeilberger Method -- Zeilberger?s Algorithm -- Extensions of the Algorithms -- Petkov?sek?s and Van Hoeij?s Algorithm -- Differential Equations for Sums -- Hyperexponential Antiderivatives -- Holonomic Equations for Integrals -- Rodrigues Formulas and Generating Functions. 330 $aModern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple?. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkov?ek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike. 410 0$aUniversitext,$x0172-5939 606 $aAlgorithms 606 $aComputer software 606 $aFunctions, Special 606 $aDifferential equations 606 $aCombinatorial analysis 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 606 $aMathematical Software$3https://scigraph.springernature.com/ontologies/product-market-codes/M14042 606 $aSpecial Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M1221X 606 $aOrdinary Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12147 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 615 0$aAlgorithms. 615 0$aComputer software. 615 0$aFunctions, Special. 615 0$aDifferential equations. 615 0$aCombinatorial analysis. 615 14$aAlgorithms. 615 24$aMathematical Software. 615 24$aSpecial Functions. 615 24$aOrdinary Differential Equations. 615 24$aCombinatorics. 676 $a515.55 700 $aKoepf$b Wolfram$4aut$4http://id.loc.gov/vocabulary/relators/aut$0481654 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299989803321 996 $aHypergeometric summation$9253292 997 $aUNINA