LEADER 04091nam 22007935 450 001 9910299989803321 005 20200702162406.0 010 $a1-4471-6464-4 024 7 $a10.1007/978-1-4471-6464-7 035 $a(CKB)3710000000143766 035 $a(EBL)1781968 035 $a(SSID)ssj0001276063 035 $a(PQKBManifestationID)11951246 035 $a(PQKBTitleCode)TC0001276063 035 $a(PQKBWorkID)11239195 035 $a(PQKB)10346409 035 $a(DE-He213)978-1-4471-6464-7 035 $a(MiAaPQ)EBC6312976 035 $a(MiAaPQ)EBC1781968 035 $a(Au-PeEL)EBL1781968 035 $a(CaPaEBR)ebr10983297 035 $a(OCoLC)881476472 035 $a(PPN)179767097 035 $a(EXLCZ)993710000000143766 100 $a20140610d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHypergeometric Summation $eAn Algorithmic Approach to Summation and Special Function Identities /$fby Wolfram Koepf 205 $a2nd ed. 2014. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d2014. 215 $a1 online resource (290 p.) 225 1 $aUniversitext,$x0172-5939 300 $aDescription based upon print version of record. 311 $a1-4471-6463-6 327 $aIntroduction -- The Gamma Function -- Hypergeometric Identities -- Hypergeometric Database -- Holonomic Recurrence Equations -- Gosper?s Algorithm -- The Wilf-Zeilberger Method -- Zeilberger?s Algorithm -- Extensions of the Algorithms -- Petkov?sek?s and Van Hoeij?s Algorithm -- Differential Equations for Sums -- Hyperexponential Antiderivatives -- Holonomic Equations for Integrals -- Rodrigues Formulas and Generating Functions. 330 $aModern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple?. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkov?ek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike. 410 0$aUniversitext,$x0172-5939 606 $aAlgorithms 606 $aComputer software 606 $aSpecial functions 606 $aDifferential equations 606 $aCombinatorics 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 606 $aMathematical Software$3https://scigraph.springernature.com/ontologies/product-market-codes/M14042 606 $aSpecial Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M1221X 606 $aOrdinary Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12147 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 615 0$aAlgorithms. 615 0$aComputer software. 615 0$aSpecial functions. 615 0$aDifferential equations. 615 0$aCombinatorics. 615 14$aAlgorithms. 615 24$aMathematical Software. 615 24$aSpecial Functions. 615 24$aOrdinary Differential Equations. 615 24$aCombinatorics. 676 $a515.55 700 $aKoepf$b Wolfram$4aut$4http://id.loc.gov/vocabulary/relators/aut$0481654 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299989803321 996 $aHypergeometric summation$9253292 997 $aUNINA