LEADER 00973nam0-2200337---450- 001 990009527060403321 005 20120209142734.0 010 $a978-88-95440-01-9 035 $a000952706 035 $aFED01000952706 035 $a(Aleph)000952706FED01 035 $a000952706 100 $a20120209d2007----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay---a---001yy 200 1 $aCodice di diritto di autore$evol. I$enormativa italiana$fGiovanni d'Ammassa, Raimondo Bellantoni 205 $a3. ed. 210 $aMilano$cNyberg Edizioni$d2007 215 $a356 p.$d21 cm 225 1 $a<>guide di dirittodautore.it 610 0 $aCodici vari 700 1$ad'Ammassa,$bGiovanni$0476487 701 1$aBellantoni,$bRaimondo$0515241 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009527060403321 952 $a0-010$bD.S.F. 9578$fFI1 959 $aFI1 996 $aCodice di diritto di autore$9855898 997 $aUNINA LEADER 03448nam 22006375 450 001 9910299987903321 005 20200701135338.0 010 $a81-322-2092-7 024 7 $a10.1007/978-81-322-2092-3 035 $a(CKB)3710000000238454 035 $a(OCoLC)890793182 035 $a(CaPaEBR)ebrary10929876 035 $a(SSID)ssj0001354072 035 $a(PQKBManifestationID)11773478 035 $a(PQKBTitleCode)TC0001354072 035 $a(PQKBWorkID)11322111 035 $a(PQKB)10194893 035 $a(MiAaPQ)EBC1966228 035 $a(DE-He213)978-81-322-2092-3 035 $a(PPN)181348640 035 $a(EXLCZ)993710000000238454 100 $a20140910d2014 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChaotic Dynamics in Nonlinear Theory$b[electronic resource] /$fby Lakshmi Burra 205 $a1st ed. 2014. 210 1$aNew Delhi :$cSpringer India :$cImprint: Springer,$d2014. 215 $a1 online resource (118 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a81-322-2091-9 320 $aIncludes bibliographical references and index. 327 $aChapter 1. Topological Considerations -- Chapter 2. Topological horseshoes and coin-tossing dynamics -- Chapter 3. Chaotic Dynamics in the vertically driven planar pendulum -- Chapter 4. Chaos in a pendulum with variable length. 330 $aUsing phase?plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved. 606 $aDynamics 606 $aErgodic theory 606 $aDifferential equations, Partial 606 $aStatistical physics 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aApplications of Nonlinear Dynamics and Chaos Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P33020 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aDifferential equations, Partial. 615 0$aStatistical physics. 615 14$aDynamical Systems and Ergodic Theory. 615 24$aPartial Differential Equations. 615 24$aApplications of Nonlinear Dynamics and Chaos Theory. 676 $a531.11 700 $aBurra$b Lakshmi$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721178 906 $aBOOK 912 $a9910299987903321 996 $aChaotic dynamics in nonlinear theory$91410000 997 $aUNINA