LEADER 03640nam 22007335 450 001 9910299984403321 005 20200629200910.0 010 $a3-319-10139-0 024 7 $a10.1007/978-3-319-10139-2 035 $a(CKB)3710000000261958 035 $a(EBL)1966932 035 $a(OCoLC)896832289 035 $a(SSID)ssj0001372816 035 $a(PQKBManifestationID)11866427 035 $a(PQKBTitleCode)TC0001372816 035 $a(PQKBWorkID)11305159 035 $a(PQKB)10506043 035 $a(MiAaPQ)EBC1966932 035 $a(DE-He213)978-3-319-10139-2 035 $a(PPN)18209555X 035 $a(EXLCZ)993710000000261958 100 $a20141010d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTime-Varying Vector Fields and Their Flows /$fby Saber Jafarpour, Andrew D. Lewis 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (125 p.) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 300 $aDescription based upon print version of record. 311 $a3-319-10138-2 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Fibre Metrics for Jet Bundles -- Finitely Differentiable, Lipschitz, and Smooth Topologies -- The COhol-topology for the Space of Holomorphic Vector Fields -- The Cw-topology for the Space of Real Analytic Vector Fields -- Time-Varying Vector Fields -- References. 330 $aThis short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aSystem theory 606 $aDynamics 606 $aErgodic theory 606 $aTopological groups 606 $aLie groups 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 615 0$aSystem theory. 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aTopological groups. 615 0$aLie groups. 615 14$aSystems Theory, Control. 615 24$aDynamical Systems and Ergodic Theory. 615 24$aTopological Groups, Lie Groups. 676 $a514.72 700 $aJafarpour$b Saber$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721238 702 $aLewis$b Andrew D$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299984403321 996 $aTime-Varying Vector Fields and Their Flows$92536887 997 $aUNINA