LEADER 04478nam 22007935 450 001 9910299980603321 005 20200702114046.0 010 $a3-319-08025-3 024 7 $a10.1007/978-3-319-08025-3 035 $a(CKB)3710000000239380 035 $a(EBL)1967833 035 $a(OCoLC)890693389 035 $a(SSID)ssj0001354233 035 $a(PQKBManifestationID)11800179 035 $a(PQKBTitleCode)TC0001354233 035 $a(PQKBWorkID)11322658 035 $a(PQKB)11551995 035 $a(MiAaPQ)EBC1967833 035 $a(DE-He213)978-3-319-08025-3 035 $a(PPN)181353040 035 $a(EXLCZ)993710000000239380 100 $a20140911d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOptimization with PDE Constraints $eESF Networking Program 'OPTPDE' /$fedited by Ronald Hoppe 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (422 p.) 225 1 $aLecture Notes in Computational Science and Engineering,$x1439-7358 ;$v101 300 $aDescription based upon print version of record. 311 $a3-319-08024-5 320 $aIncludes bibliographical references. 327 $aSolution of 2D Contact Shape Optimization Problems -- Phase Field Methods for Binary Recovery -- Programming with Separable Ellipsoidal Constraints -- Adaptive Finite Elements for Optimally Controlled Elliptic Variational Inequalities -- Topology Design of Elastic Structures for a Contact Model -- Bisection Methods for Mesh Generation -- Differentiability of Energy Functionals for Unilateral Problems in Domains -- Two-Sided Guaranteed Estimates of the Cost Functional for Optimal Control Problems with Elliptic State Equations -- Sensitivity Analysis of Work Functional for Compressible Navier-Stokes Equations -- Exact Controllability to Trajectories for Navier-Stokes Equations. 330 $aThis book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ?Optimization with PDEs? (OPTPDE). 410 0$aLecture Notes in Computational Science and Engineering,$x1439-7358 ;$v101 606 $aComputer science$xMathematics 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aMathematical optimization 606 $aMathematical physics 606 $aPhysics 606 $aComputational Science and Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/M14026 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 606 $aOptimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26008 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 615 0$aComputer science$xMathematics. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aMathematical optimization. 615 0$aMathematical physics. 615 0$aPhysics. 615 14$aComputational Science and Engineering. 615 24$aMathematical and Computational Engineering. 615 24$aOptimization. 615 24$aMathematical Applications in the Physical Sciences. 615 24$aNumerical and Computational Physics, Simulation. 676 $a004 676 $a330.015196 676 $a510 676 $a519 702 $aHoppe$b Ronald$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910299980603321 996 $aOptimization with PDE constraints$91409871 997 $aUNINA