LEADER 02780cam0-2200397---450- 001 990009458230403321 005 20160205235924.0 035 $a000945823 035 $aFED01000945823 035 $a(Aleph)000945823FED01 035 $a000945823 100 $a20111019d1556----km-y0itay50------ba 101 0 $alat 105 $af-------001yy 200 1 $aGaleni Omnia quae extant in Latinum sermonem conuersa. Quibus post summam antea diligentiam multum nunc quoque splendoris accessit, quod loca quamplurima ex emendatorum exemplarium grecorum collatione et illustrata: fuerint & castigata ex tertia Iuntarum editione 205 $aTertia hac nostra editione 210 $aVenetiis$capud Iuntas$d1556 215 $a10 v.$d2° 300 $aA cura di Ioannes Baptista Montanus come appare nella pref. 327 0 $a[1]: Galeni Prima classis naturam corporis humani, hoc est elementa, temperaturas, humores, structurae habitudinisque modos, partium dissectionem, vsum, facultates & actiones, seminis denique foetuumque tractationem complectitur$a[2]: Galeni Secunda classis materiam sanitatis conseruatricem tradit ..$a[3]: Galeni Tertia classis quaecunque ad morborum omnium ac symptomatum differentias & causas & tempora attinent, declarat$a[4]: Galeni Quarta classis signa quibus tum morbos & locos affectos dignoscere, tum futura praescire possumus, docet$a[5]: Galeni Quinta classis eam medicinae partem, quae ad pharmaciam spectat, exponens, simplicium medicamentorum ... doctrinam comprehendit$a[8]: Galeni Extra ordinem classium libri in quibus breues rerum determinationes traduntur, ..$a[9]: Galeno ascripti libri spurii libri, qui variam artis medicae farraginem ex varijs auctoribus excerptam continentes, ..$a[11]: Antonii Musae Brasauoli... Index refertissimus in omnes Galeni libros, qui ex Iuntarum tertia editione extant$a[12]: Galeni Isagogici libri, qui, cum in totam artem medicam introducant, in principio totius operis sunt locati: .. 620 $aItalia.$dVenezia 700 1$aGalenus,$bClaudius$f<129-199>$0198761 702 1$aDa Monte,$bGiovanni Battista 702 1$aBrasavola,$bAntonio Musa$f<1500-1555> 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aAQ 912 $a990009458230403321 952 $a54 C 5.[1]$b3596$fDMVAP 952 $a54 C 6.[5]$fDMVAP 952 $a54 C 7.[12] + [8] + [9]$fDMVAP 952 $a54 C 8.[2]$fDMVAP 952 $a54 C 9.[4]$fDMVAP 952 $a54 C 4.[11]$b3743$fDMVAP 959 $aDMVAP 996 $aGaleni Omnia quae extant in Latinum sermonem conuersa. Quibus post summam antea diligentiam multum nunc quoque splendoris accessit, quod loca quamplurima ex emendatorum exemplarium grecorum collatione et illustrata: fuerint & castigata ex tertia Iuntarum editione$9761409 997 $aUNINA LEADER 03733nam 22005535 450 001 9910299980403321 005 20220404233613.0 010 $a88-7642-520-9 024 7 $a10.1007/978-88-7642-520-2 035 $a(CKB)3710000000359184 035 $a(EBL)1974075 035 $a(SSID)ssj0001452256 035 $a(PQKBManifestationID)11806913 035 $a(PQKBTitleCode)TC0001452256 035 $a(PQKBWorkID)11478924 035 $a(PQKB)11350840 035 $a(MiAaPQ)EBC1974075 035 $a(DE-He213)978-88-7642-520-2 035 $a(PPN)184495490 035 $a(EXLCZ)993710000000359184 100 $a20150213d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOn some applications of diophantine approximations $ea translation of C.L. Siegel?s Über einige Anwendungen diophantischer Approximationen, with a commentary by C. Fuchs and U. Zannier) /$fedited by Umberto Zannier 205 $a1st ed. 2014. 210 1$aPisa :$cScuola Normale Superiore :$cImprint: Edizioni della Normale,$d2014. 215 $a1 online resource (169 p.) 225 1 $aMonographs (Scuola Normale Superiore) ;$v2 300 $aWith a commentary and the article Integral points on curves: Siegel's theorem after Siegel's proof by Clemens Fuchs and Umberto Zannier. 311 $a88-7642-519-5 320 $aIncludes bibliographical references. 327 $aCover; Title Page; Copyright Page; Table of Contents; Preface; On some applications of Diophantine approximations; 1 Part I: On transcendental numbers; 1 Tools from complex analysis; 2 Tools from arithmetic; 3 The transcendence of J0(?); 4 Further applications of the method; 2 Part II: On Diophantine equations; 1 Equations of genus 0; 2 Ideals in function fields and number fields; 3 Equations of genus 1; 4 Auxiliary means from the theory of ABEL functions; 5 Equations of arbitrary positive genus; 6 An application of the approximation method; 7 Cubic forms with positive discriminant 327 $aÜber einige Anwendungen diophantischer ApproximationenIntegral points on curves: Siegel's theorem after Siegel's proof; 1 Introduction; 2 Some developments after Siegel's proof; 3 Siegel's Theorem and some preliminaries; 4 Three arguments for Siegel's Theorem; References; MONOGRAPHS 330 $aThis book consists mainly of the translation, by C. Fuchs, of the 1929 landmark paper "Über einige Anwendungen diophantischer Approximationen" by C.L. Siegel. The paper contains proofs of most important results in transcendence theory and diophantine analysis, notably Siegel?s celebrated theorem on integral points on algebraic curves. Many modern versions of Siegel?s proof have appeared, but none seem to faithfully reproduce all features of the original one. This translation makes Siegel?s original ideas and proofs available for the first time in English. The volume also contains the original version of the paper (in German) and an article by the translator and U. Zannier, commenting on some aspects of the evolution of this field following Siegel?s paper. To end, it presents three modern proofs of Siegel?s theorem on integral points. 410 0$aMonographs (Scuola Normale Superiore) ;$v2 606 $aNumber theory 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aNumber theory. 615 14$aNumber Theory. 676 $a510 676 $a512.7 702 $aZannier$b Umberto$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910299980403321 996 $aOn Some Applications of Diophantine Approximations$92544386 997 $aUNINA