LEADER 03878nam 22007695 450 001 9910299979103321 005 20250609110055.0 010 $a3-319-08666-9 024 7 $a10.1007/978-3-319-08666-8 035 $a(CKB)3710000000212213 035 $a(Springer)9783319086668 035 $a(MH)014131715-9 035 $a(SSID)ssj0001297258 035 $a(PQKBManifestationID)11735225 035 $a(PQKBTitleCode)TC0001297258 035 $a(PQKBWorkID)11362937 035 $a(PQKB)11765619 035 $a(DE-He213)978-3-319-08666-8 035 $a(MiAaPQ)EBC5586525 035 $a(Au-PeEL)EBL5586525 035 $a(OCoLC)885334223 035 $a(PPN)179926713 035 $a(MiAaPQ)EBC1783131 035 $a(EXLCZ)993710000000212213 100 $a20140726d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn Introduction to Riemannian Geometry $eWith Applications to Mechanics and Relativity /$fby Leonor Godinho, José Natário 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (X, 467 p. 60 illus.)$conline resource 225 1 $aUniversitext,$x0172-5939 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-319-08665-0 327 $aDifferentiable Manifolds -- Differential Forms -- Riemannian Manifolds -- Curvature -- Geometric Mechanics -- Relativity. 330 $aUnlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study. 410 0$aUniversitext,$x0172-5939 606 $aGeometry, Differential 606 $aMathematical physics 606 $aMechanics 606 $aGravitation 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 606 $aClassical and Quantum Gravitation, Relativity Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19070 615 0$aGeometry, Differential. 615 0$aMathematical physics. 615 0$aMechanics. 615 0$aGravitation. 615 14$aDifferential Geometry. 615 24$aMathematical Physics. 615 24$aClassical Mechanics. 615 24$aClassical and Quantum Gravitation, Relativity Theory. 676 $a516.36 700 $aGodinho$b Leonor$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721267 702 $aNatário$b José$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299979103321 996 $aAn Introduction to Riemannian Geometry$92522980 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress