LEADER 03757nam 22006015 450 001 9910299977603321 005 20200704115019.0 010 $a3-319-09210-3 024 7 $a10.1007/978-3-319-09210-2 035 $a(CKB)3710000000249056 035 $a(EBL)1967859 035 $a(OCoLC)892982834 035 $a(SSID)ssj0001354049 035 $a(PQKBManifestationID)11868578 035 $a(PQKBTitleCode)TC0001354049 035 $a(PQKBWorkID)11323193 035 $a(PQKB)11720684 035 $a(MiAaPQ)EBC1967859 035 $a(DE-He213)978-3-319-09210-2 035 $a(PPN)181353067 035 $a(EXLCZ)993710000000249056 100 $a20140929d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAttractive Ellipsoids in Robust Control /$fby Alexander Poznyak, Andrey Polyakov, Vadim Azhmyakov 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2014. 215 $a1 online resource (365 p.) 225 1 $aSystems & Control: Foundations & Applications,$x2324-9749 300 $aDescription based upon print version of record. 311 $a3-319-09209-X 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- 2. Mathematical Backgrounds -- 3. Robust State Feedback Control -- 4. Robust Output Feedback Control -- 5. Control with Sample-Data Measurements -- 6. Sample Data and Quantifying Output Control -- 7. Robust Control of Implicit Systems -- 8. Attractive Ellipsoids in Sliding Mode control -- 9. Robust Stabilization of Time-Delay Systems -- 10. Robust Control of Switched Systems -- 11. Bounded Robust Control -- 12. Attractive Ellipsoid Method with Adaptation. 330 $aThis monograph introduces a newly developed robust-control design technique for a wide class of continuous-time dynamical systems called the ?attractive ellipsoid method.? Along with a coherent introduction to the proposed control design and related topics, the monograph studies nonlinear affine control systems in the presence of uncertainty and presents a constructive and easily implementable control strategy that guarantees certain stability properties. The authors discuss linear-style feedback control synthesis in the context of the above-mentioned systems. The development and physical implementation of high-performance robust-feedback controllers that work in the absence of complete information is addressed, with numerous examples to illustrate how to apply the attractive ellipsoid method to mechanical and electromechanical systems. While theorems are proved systematically, the emphasis is on understanding and applying the theory to real-world situations. Attractive Ellipsoids in Robust Control will appeal to undergraduate and graduate students with a background in modern systems theory as well as researchers in the fields of control engineering and applied mathematics. 410 0$aSystems & Control: Foundations & Applications,$x2324-9749 606 $aSystem theory 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 615 0$aSystem theory. 615 14$aSystems Theory, Control. 676 $a629.8312 700 $aPoznyak$b Alexander$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721769 702 $aPolyakov$b Andrey$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aAzhmyakov$b Vadim$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299977603321 996 $aAttractive Ellipsoids in Robust Control$92540400 997 $aUNINA