LEADER 03198oam 2200469 450 001 9910299975703321 005 20190911103511.0 010 $a1-4471-5460-6 024 7 $a10.1007/978-1-4471-5460-0 035 $a(OCoLC)863823003 035 $a(MiFhGG)GVRL6XWI 035 $a(EXLCZ)992550000001151458 100 $a20131018d2014 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aAnalysis of finite difference schemes $efor linear partial differential equations with generalized solutions /$fBosko S. Jovanovic, Endre Suli 205 $a1st ed. 2014. 210 1$aLondon :$cSpringer,$d2014. 215 $a1 online resource (xiii, 408 pages) $cillustrations 225 1 $aSpringer Series in Computational Mathematics,$x0179-3632 ;$v46 300 $a"ISSN: 0179-3632." 311 $a1-4471-5459-2 320 $aIncludes bibliographical references and index. 327 $aDistributions and function spaces -- Elliptic boundary-value problems -- Finite difference approximation of parabolic problems -- Finite difference approximation of hyperbolic problems. 330 $aThis book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary ? and initial ? value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations. 410 0$aSpringer series in computational mathematics ;$v46. 606 $aBoundary value problems 606 $aDifferential equations, Partial$xNumerical solutions 615 0$aBoundary value problems. 615 0$aDifferential equations, Partial$xNumerical solutions. 676 $a515.353 700 $aJovanovi?$b Bo?ko S$4aut$4http://id.loc.gov/vocabulary/relators/aut$0524657 702 $aSuli$b Endre$f1956- 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910299975703321 996 $aAnalysis of Finite Difference Schemes$92512149 997 $aUNINA LEADER 01484nam0 22003973i 450 001 NAP0478008 005 20251003044253.0 010 $a0132128128 100 $a20091223d1989 ||||0itac50 ba 101 | $aeng 102 $aus 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aDigital filters$fRichard Wesley Hamming 205 $a3. ed 210 $aEnglewood Cliffs (N.J.)$cPrentice-Hall$dc1989 215 $aXIV, 284 p.$d24 cm 225 | $aPrentice-Hall signal processing series 300 $aIn testa al front.: AT&T. 410 0$1001MIL0022772$12001 $aPrentice-Hall signal processing series 606 $aFiltri elettrici$2FIR$3CFIC048139$9E 676 $a621.3815$9ELETTRONICA. COMPONENTI E CIRCUITI$v14 676 $a621.3815324$9Componenti e circuiti. Filtri$v22 696 $aFiltri d'onda$aFiltri di onda$aFiltri di frequenza 699 $aFiltri elettrici$yFiltri d'onda 699 $aFiltri elettrici$yFiltri di onda 699 $aFiltri elettrici$yFiltri di frequenza 700 1$aHamming$b, Richard Wesley$f <1915-1998>$3UFIV000250$4070$013873 801 3$aIT$bIT-000000$c20091223 850 $aIT-BN0095 901 $bNAP 01$cSALA DING $n$ 912 $aNAP0478008 950 0$aBiblioteca Centralizzata di Ateneo$c1 v.$d 01SALA DING 621.3815 HAM.di$e 0102 0000003285 VMA A4 1 v.$fY $h19930727$i19930727 977 $a 01 996 $aDigital filters$91490819 997 $aUNISANNIO