LEADER 00985nam0-22003371i-450- 001 990000507290403321 005 20091202111440.0 010 $a019856189X$bv. 1 010 $a0198561903$bv. 2 035 $a000050729 035 $aFED01000050729 035 $a(Aleph)000050729FED01 035 $a000050729 100 $a20020821d1987----km-y0itay50------ba 101 0 $aeng 105 $aa-------001yy 200 1 $aMethods in electromagnetic wave propagation$fD. S. Jones 210 $aOxford$cOxford University press$d1987 215 $a2 v.$cill.$d24 cm 225 1 $a<>Oxford engineering science series 225 1 $aOxford science publications 610 0 $aOnde elettromagnetiche$aPropagazione 676 $a621.38 700 1$aJones,$bDouglas Samuel 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000507290403321 952 $a10 E III 264$b742 D.E.$fDINEL 952 $a10 E III 265$b741 D.E.$fDINEL 959 $aDINEL 997 $aUNINA LEADER 03464nam 22005895 450 001 9910299884503321 005 20200705161506.0 010 $a3-319-65232-X 024 7 $a10.1007/978-3-319-65232-0 035 $a(CKB)3710000001631012 035 $a(DE-He213)978-3-319-65232-0 035 $a(MiAaPQ)EBC4996672 035 $a(PPN)20385103X 035 $a(EXLCZ)993710000001631012 100 $a20170830d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSubmodular Rate Region Models for Multicast Communication in Wireless Networks /$fby Maximilian Riemensberger 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XXIII, 281 p. 52 illus.) 225 1 $aFoundations in Signal Processing, Communications and Networking,$x1863-8538 ;$v14 311 $a3-319-65231-1 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Submodular Information Flow Models for Multicast Communication -- Network Utility Maximization via Submodular Dual Decomposition -- Network Coding Bounds and Submodularity -- Deterministic and Linear Finite Field Networks -- Erasure Broadcast Networks -- Network Coding Bounds for Gaussian Networks -- Numerical Results for Gaussian Networks -- Concluding Remarks. 330 $aThis book proposes representations of multicast rate regions in wireless networks based on the mathematical concept of submodular functions, e.g., the submodular cut model and the polymatroid broadcast model. These models subsume and generalize the graph and hypergraph models. The submodular structure facilitates a dual decomposition approach to network utility maximization problems, which exploits the greedy algorithm for linear programming on submodular polyhedra. This approach yields computationally efficient characterizations of inner and outer bounds on the multicast capacity regions for various classes of wireless networks. 410 0$aFoundations in Signal Processing, Communications and Networking,$x1863-8538 ;$v14 606 $aElectrical engineering 606 $aGraph theory 606 $aApplication software 606 $aFunctional analysis 606 $aCommunications Engineering, Networks$3https://scigraph.springernature.com/ontologies/product-market-codes/T24035 606 $aGraph Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M29020 606 $aInformation Systems Applications (incl. Internet)$3https://scigraph.springernature.com/ontologies/product-market-codes/I18040 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aElectrical engineering. 615 0$aGraph theory. 615 0$aApplication software. 615 0$aFunctional analysis. 615 14$aCommunications Engineering, Networks. 615 24$aGraph Theory. 615 24$aInformation Systems Applications (incl. Internet). 615 24$aFunctional Analysis. 676 $a621.382 700 $aRiemensberger$b Maximilian$4aut$4http://id.loc.gov/vocabulary/relators/aut$01065050 906 $aBOOK 912 $a9910299884503321 996 $aSubmodular Rate Region Models for Multicast Communication in Wireless Networks$92542796 997 $aUNINA