LEADER 04100nam 22006975 450 001 9910299876403321 005 20251116200134.0 010 $a3-319-69069-8 024 7 $a10.1007/978-3-319-69069-8 035 $a(CKB)4100000001039688 035 $a(DE-He213)978-3-319-69069-8 035 $a(MiAaPQ)EBC5123082 035 $a(PPN)221252800 035 $a(EXLCZ)994100000001039688 100 $a20171103d2018 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvance compression and watermarking technique for speech signals /$fby Rohit Thanki, Komal Borisagar, Surekha Borra 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XVIII, 69 p. 38 illus., 28 illus. in color.) 225 1 $aSpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,$x2191-737X 311 08$a3-319-69068-X 320 $aIncludes bibliographical references. 327 $aIntroduction -- Background Information -- Speech Watermarking Technique using Ridgelet, DWT and SVD -- Speech Compression Technique using CS Theory -- Conclusions -- References. 330 $aThis book introduces methods for copyright protection and compression for speech signals. The first method introduces copyright protection of speech signal using watermarking; the second introduces compression of the speech signal using Compressive Sensing (CS). Both methods are tested and analyzed. The speech watermarking method uses technology such as Finite Ridgelet Transform (FRT), Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD). The performance of the method is evaluated and compared with existing watermarking methods. In the speech compression method, the standard Compressive Sensing (CS) process is used for compression of the speech signal. The performance of the proposed method is evaluated using various transform bases like Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Singular Value Decomposition (SVD), and Fast Discrete Curvelet Transform (FDCuT). 410 0$aSpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,$x2191-737X 606 $aSignal processing 606 $aImage processing 606 $aSpeech processing systems 606 $aComputational linguistics 606 $aNatural language processing (Computer science) 606 $aDatabase management 606 $aSignal, Image and Speech Processing$3https://scigraph.springernature.com/ontologies/product-market-codes/T24051 606 $aComputational Linguistics$3https://scigraph.springernature.com/ontologies/product-market-codes/N22000 606 $aNatural Language Processing (NLP)$3https://scigraph.springernature.com/ontologies/product-market-codes/I21040 606 $aDatabase Management$3https://scigraph.springernature.com/ontologies/product-market-codes/I18024 615 0$aSignal processing. 615 0$aImage processing. 615 0$aSpeech processing systems. 615 0$aComputational linguistics. 615 0$aNatural language processing (Computer science) 615 0$aDatabase management. 615 14$aSignal, Image and Speech Processing. 615 24$aComputational Linguistics. 615 24$aNatural Language Processing (NLP). 615 24$aDatabase Management. 676 $a005.82 700 $aThanki$b Rohit$4aut$4http://id.loc.gov/vocabulary/relators/aut$0878537 702 $aBorisagar$b Komal$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aBorra$b Surekha$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299876403321 996 $aAdvance Compression and Watermarking Technique for Speech Signals$92544407 997 $aUNINA