LEADER 04065nam 22007695 450 001 9910299853603321 005 20210910170234.0 010 $a3-319-12877-9 024 7 $a10.1007/978-3-319-12877-1 035 $a(CKB)3710000000291508 035 $a(EBL)1967524 035 $a(OCoLC)896824820 035 $a(SSID)ssj0001386282 035 $a(PQKBManifestationID)11809731 035 $a(PQKBTitleCode)TC0001386282 035 $a(PQKBWorkID)11350948 035 $a(PQKB)11660402 035 $a(DE-He213)978-3-319-12877-1 035 $a(MiAaPQ)EBC1967524 035 $a(PPN)183094174 035 $a(EXLCZ)993710000000291508 100 $a20141119d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aStochastic Modeling of Thermal Fatigue Crack Growth /$fby Vasile Radu 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (96 p.) 225 1 $aApplied Condition Monitoring,$x2363-698X ;$v1 300 $aDescription based upon print version of record. 311 $a3-319-12876-0 320 $aIncludes bibliographical references. 327 $aIntroduction -- Background on stochastic models for cumulative damage process -- Basic mathematical tools for stochastic fatigue analysis -- Stochastic model for thermal fatigue crack growth -- Application -- Conclusions. 330 $aThe book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-oriented guide for all undergraduate students, young scientists and researchers dealing with probabilistic assessment of structural integrity.    . 410 0$aApplied Condition Monitoring,$x2363-698X ;$v1 606 $aMechanics 606 $aMechanics, Applied 606 $aIndustrial engineering 606 $aProduction engineering 606 $aNuclear energy 606 $aBuilding materials 606 $aSolid Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15010 606 $aIndustrial and Production Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T22008 606 $aNuclear Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/113000 606 $aStructural Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z11000 615 0$aMechanics. 615 0$aMechanics, Applied. 615 0$aIndustrial engineering. 615 0$aProduction engineering. 615 0$aNuclear energy. 615 0$aBuilding materials. 615 14$aSolid Mechanics. 615 24$aIndustrial and Production Engineering. 615 24$aNuclear Energy. 615 24$aStructural Materials. 676 $a620.1121 700 $aRadu$b Vasile$4aut$4http://id.loc.gov/vocabulary/relators/aut$0231509 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299853603321 996 $aStochastic modeling of thermal fatigue crack growth$91413133 997 $aUNINA