LEADER 04008nam 22006735 450 001 9910299827003321 005 20200704024443.0 010 $a81-322-2458-2 024 7 $a10.1007/978-81-322-2458-7 035 $a(CKB)3710000000416945 035 $a(SSID)ssj0001501205 035 $a(PQKBManifestationID)11854453 035 $a(PQKBTitleCode)TC0001501205 035 $a(PQKBWorkID)11522217 035 $a(PQKB)11634907 035 $a(DE-He213)978-81-322-2458-7 035 $a(MiAaPQ)EBC6284871 035 $a(MiAaPQ)EBC5587211 035 $a(Au-PeEL)EBL5587211 035 $a(OCoLC)910667687 035 $a(PPN)186029853 035 $a(EXLCZ)993710000000416945 100 $a20150528d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGeneralized Rough Sets$b[electronic resource] $eHybrid Structure and Applications /$fby Anjan Mukherjee 205 $a1st ed. 2015. 210 1$aNew Delhi :$cSpringer India :$cImprint: Springer,$d2015. 215 $a1 online resource (XIII, 160 p. 1 illus.) 225 1 $aStudies in Fuzziness and Soft Computing,$x1434-9922 ;$v324 300 $aIncludes index. 311 $a81-322-2457-4 327 $aIntroduction to Fuzzy Sets, Rough Sets and Soft Sets -- On Generalised Interval-Valued Intuitionistic Fuzzy Soft Sets -- Soft Rough Intuitionistic Fuzzy Sets -- Interval-Valued Intuitionistic Fuzzy Soft Rough Sets -- Interval Valued Intuitionistic Fuzzy Soft Topological Spaces -- Interval Valued Intuitionistic Fuzzy Soft Multi-sets and their Relations -- Interval Valued Neutrosophic Soft Sets -- Topological Structure formed by Soft Multi Sets and Soft Multi Compact Spaces -- Soft Interval Valued Intuitionistic Fuzzy Rough Sets -- IF Parameterized Intuitionistic Fuzzy Soft Set Theories On Decisions-Making. 330 $aThe book introduces the concept of ?generalized interval valued intuitionistic fuzzy soft sets?. It presents the basic properties of these sets and also, investigates an application of generalized interval valued intuitionistic fuzzy soft sets in decision making with respect to interval of degree of preference. The concept of ?interval valued intuitionistic fuzzy soft rough sets? is discussed and interval valued intuitionistic fuzzy soft rough set based multi criteria group decision making scheme is presented, which refines the primary evaluation of the whole expert group and enables us to select the optimal object in a most reliable manner. The book also details concept of interval valued intuitionistic fuzzy sets of type 2. It presents the basic properties of these sets. The book also introduces the concept of ?interval valued intuitionistic fuzzy soft topological space (IVIFS topological space)? together with intuitionistic fuzzy soft open sets (IVIFS open sets) and intuitionistic fuzzy soft closed sets (IVIFS closed sets). 410 0$aStudies in Fuzziness and Soft Computing,$x1434-9922 ;$v324 606 $aComputational intelligence 606 $aComputational complexity 606 $aAlgorithms 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aComplexity$3https://scigraph.springernature.com/ontologies/product-market-codes/T11022 606 $aMathematics of Algorithmic Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/M13130 615 0$aComputational intelligence. 615 0$aComputational complexity. 615 0$aAlgorithms. 615 14$aComputational Intelligence. 615 24$aComplexity. 615 24$aMathematics of Algorithmic Complexity. 676 $a511.322 700 $aMukherjee$b Anjan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0739798 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299827003321 996 $aGeneralized Rough Sets$91465863 997 $aUNINA