LEADER 03971nam 22007695 450 001 9910299819103321 005 20200701162615.0 010 $a3-319-20242-1 024 7 $a10.1007/978-3-319-20242-6 035 $a(CKB)3710000000434244 035 $a(EBL)2095418 035 $a(SSID)ssj0001525131 035 $a(PQKBManifestationID)11917411 035 $a(PQKBTitleCode)TC0001525131 035 $a(PQKBWorkID)11498123 035 $a(PQKB)10792299 035 $a(DE-He213)978-3-319-20242-6 035 $a(MiAaPQ)EBC2095418 035 $z(PPN)258861649 035 $a(PPN)186397062 035 $a(EXLCZ)993710000000434244 100 $a20150617d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aThermal Effects in Supercapacitors /$fby Guoping Xiong, Arpan Kundu, Timothy S. Fisher 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (154 p.) 225 1 $aSpringerBriefs in Thermal Engineering and Applied Science,$x2193-2530 300 $aDescription based upon print version of record. 311 $a3-319-20241-3 320 $aIncludes bibliographical references and index at the end of each chapters. 327 $aThermal Management in Electrochemical Energy Storage Systems -- Thermal Considerations for Supercapacitors -- Influence of Temperature on Electrolytes -- Capacitance and ESR -- Thermal Modeling of Supercapacitors -- Summary and Outlook -- Appendix A: Definition of Selected Acronyms. 330 $aThis Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and  replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems. 410 0$aSpringerBriefs in Thermal Engineering and Applied Science,$x2193-2530 606 $aEnergy storage 606 $aThermodynamics 606 $aHeat engineering 606 $aHeat transfer 606 $aMass transfer 606 $aElectronic circuits 606 $aEnergy Storage$3https://scigraph.springernature.com/ontologies/product-market-codes/116000 606 $aEngineering Thermodynamics, Heat and Mass Transfer$3https://scigraph.springernature.com/ontologies/product-market-codes/T14000 606 $aCircuits and Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/T24068 615 0$aEnergy storage. 615 0$aThermodynamics. 615 0$aHeat engineering. 615 0$aHeat transfer. 615 0$aMass transfer. 615 0$aElectronic circuits. 615 14$aEnergy Storage. 615 24$aEngineering Thermodynamics, Heat and Mass Transfer. 615 24$aCircuits and Systems. 676 $a621.315 700 $aXiong$b Guoping$4aut$4http://id.loc.gov/vocabulary/relators/aut$0720930 702 $aKundu$b Arpan$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aFisher$b Timothy S$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299819103321 996 $aThermal Effects in Supercapacitors$92523958 997 $aUNINA