LEADER 04058nam 22007215 450 001 9910299783903321 005 20220415175413.0 010 $a3-319-13797-2 024 7 $a10.1007/978-3-319-13797-1 035 $a(CKB)3710000000342469 035 $a(EBL)1963402 035 $a(SSID)ssj0001424549 035 $a(PQKBManifestationID)11809156 035 $a(PQKBTitleCode)TC0001424549 035 $a(PQKBWorkID)11367518 035 $a(PQKB)10641445 035 $a(DE-He213)978-3-319-13797-1 035 $a(MiAaPQ)EBC1963402 035 $a(PPN)183520572 035 $a(EXLCZ)993710000000342469 100 $a20150119d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical methods for nonlinear partial differential equations /$fby Sören Bartels 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (394 p.) 225 1 $aSpringer Series in Computational Mathematics,$x0179-3632 ;$v47 300 $aDescription based upon print version of record. 311 $a3-319-13796-4 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $a1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index. 330 $aThe description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations. 410 0$aSpringer Series in Computational Mathematics,$x0179-3632 ;$v47 606 $aNumerical analysis 606 $aPartial differential equations 606 $aAlgorithms 606 $aCalculus of variations 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 606 $aCalculus of Variations and Optimal Control; Optimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26016 615 0$aNumerical analysis. 615 0$aPartial differential equations. 615 0$aAlgorithms. 615 0$aCalculus of variations. 615 14$aNumerical Analysis. 615 24$aPartial Differential Equations. 615 24$aAlgorithms. 615 24$aCalculus of Variations and Optimal Control; Optimization. 676 $a510 676 $a515.353 676 $a515.64 676 $a518 676 $a518.1 700 $aBartels$b Sören$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755547 906 $aBOOK 912 $a9910299783903321 996 $aNumerical methods for nonlinear partial differential equations$91522542 997 $aUNINA