LEADER 04194nam 22007575 450 001 9910299783503321 005 20200629142446.0 010 $a3-319-11086-1 024 7 $a10.1007/978-3-319-11086-8 035 $a(CKB)3710000000306125 035 $a(SSID)ssj0001386600 035 $a(PQKBManifestationID)11771546 035 $a(PQKBTitleCode)TC0001386600 035 $a(PQKBWorkID)11374316 035 $a(PQKB)11452350 035 $a(DE-He213)978-3-319-11086-8 035 $a(MiAaPQ)EBC6314254 035 $a(MiAaPQ)EBC5590570 035 $a(Au-PeEL)EBL5590570 035 $a(OCoLC)1066179290 035 $a(PPN)18309610X 035 $a(EXLCZ)993710000000306125 100 $a20141119d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Mathematical Theory of Time-Harmonic Maxwell's Equations $eExpansion-, Integral-, and Variational Methods /$fby Andreas Kirsch, Frank Hettlich 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XIII, 337 p. 3 illus., 1 illus. in color.) 225 1 $aApplied Mathematical Sciences,$x0066-5452 ;$v190 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-11085-3 327 $aIntroduction -- Expansion into Wave Functions -- Scattering From a Perfect Conductor -- The Variational Approach to the Cavity Problem -- Boundary Integral Equation Methods for Lipschitz Domains -- Appendix -- References -- Index. 330 $aThis book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variational equations. The book arose from lectures taught by the authors over many years and can be helpful in designing graduate courses for mathematically orientated students on electromagnetic wave propagation problems. The students should have some knowledge on vector analysis (curves, surfaces, divergence theorem) and functional analysis (normed spaces, Hilbert spaces, linear and bounded operators, dual space). Written in an accessible manner, topics are first approached with simpler scale Helmholtz Equations before turning to Maxwell Equations. There are examples and exercises throughout the book. It will be useful for graduate students and researchers in applied mathematics and engineers working in the theoretical approach to electromagnetic wave propagation. 410 0$aApplied Mathematical Sciences,$x0066-5452 ;$v190 606 $aPartial differential equations 606 $aFunctional analysis 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aNumerical analysis 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 615 0$aPartial differential equations. 615 0$aFunctional analysis. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aNumerical analysis. 615 14$aPartial Differential Equations. 615 24$aFunctional Analysis. 615 24$aMathematical and Computational Engineering. 615 24$aNumerical Analysis. 676 $a530.141 700 $aKirsch$b Andreas$4aut$4http://id.loc.gov/vocabulary/relators/aut$028299 702 $aHettlich$b Frank$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299783503321 996 $aThe Mathematical Theory of Time-Harmonic Maxwell's Equations$92508615 997 $aUNINA