LEADER 03997nam 22006735 450 001 9910299781603321 005 20250609112120.0 010 $a3-319-16652-2 024 7 $a10.1007/978-3-319-16652-0 035 $a(CKB)3710000000394669 035 $a(EBL)2095487 035 $a(SSID)ssj0001501489 035 $a(PQKBManifestationID)11901919 035 $a(PQKBTitleCode)TC0001501489 035 $a(PQKBWorkID)11446107 035 $a(PQKB)10059938 035 $a(DE-He213)978-3-319-16652-0 035 $a(MiAaPQ)EBC2095487 035 $a(PPN)185487068 035 $a(MiAaPQ)EBC3109299 035 $a(EXLCZ)993710000000394669 100 $a20150406d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGeneralized Adjoint Systems /$fby Demetrios Serakos 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (72 p.) 225 1 $aSpringerBriefs in Optimization,$x2190-8354 300 $aDescription based upon print version of record. 311 08$a3-319-16651-4 320 $aIncludes bibliographical references. 327 $a1. Introduction -- 2.Preliminaries -- 3. Spaces of time functions consisting of input-output systems -- 4. A generalized adjoint system -- 5. A generalized adjoint map -- 6. On the invertibility using  the generalized adjoint system -- 7. Noise and disturbance bounds using adjoints.-8 . Example -- 9. Summary and conclusion On the input-output system topology. 330 $aThis book defines and develops the generalized adjoint of an input-output system. It is the result of a theoretical development and examination of the generalized adjoint concept and the conditions under which systems analysis using adjoints is valid. Results developed in this book are useful aids for the analysis and modeling of physical systems, including the development of guidance and control algorithms and in developing simulations. The generalized adjoint system is defined and is patterned similarly to adjoints of bounded linear transformations. Next the elementary properties of the generalized adjoint system are derived. For a space of input-output systems, a generalized adjoint map from this space of systems to the space of generalized adjoints is defined. Then properties of the generalized adjoint map are derived. Afterward the author demonstrates that the inverse of an input-output system may be represented in terms of the generalized adjoint. The use of generalized adjoints to determine bounds for undesired inputs such as noise and disturbance to an input-output system is presented and methods which parallel adjoints in linear systems theory are utilized. Finally, an illustrative example is presented which utilizes an integral operator representation for the system mapping. 410 0$aSpringerBriefs in Optimization,$x2190-8354 606 $aCalculus of variations 606 $aOperator theory 606 $aFunctional analysis 606 $aCalculus of Variations and Optimal Control; Optimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26016 606 $aOperator Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12139 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aCalculus of variations. 615 0$aOperator theory. 615 0$aFunctional analysis. 615 14$aCalculus of Variations and Optimal Control; Optimization. 615 24$aOperator Theory. 615 24$aFunctional Analysis. 676 $a515.352 700 $aSerakos$b Demetrios$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721221 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299781603321 996 $aGeneralized adjoint systems$91522604 997 $aUNINA