LEADER 02521nam 22005175 450 001 9910299781403321 005 20200703135414.0 010 $a3-662-45747-4 024 7 $a10.1007/978-3-662-45747-4 035 $a(CKB)3710000000402857 035 $a(EBL)2094221 035 $a(SSID)ssj0001501745 035 $a(PQKBManifestationID)11830621 035 $a(PQKBTitleCode)TC0001501745 035 $a(PQKBWorkID)11446655 035 $a(PQKB)10087944 035 $a(DE-He213)978-3-662-45747-4 035 $a(MiAaPQ)EBC2094221 035 $a(PPN)185484581 035 $a(EXLCZ)993710000000402857 100 $a20150423d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aStructure Theory for Canonical Classes of Finite Groups /$fby Wenbin Guo 205 $a1st ed. 2015. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2015. 215 $a1 online resource (369 p.) 300 $aDescription based upon print version of record. 311 $a3-662-45746-6 320 $aIncludes bibliographical references and index. 327 $aThe F-hypercentre and its generalizations -- Groups with given systems of X-permutable subgroups -- Between complement and supplement -- Groups with given maximal chains of subgroups -- Formations and Fitting classes. 330 $aThis book offers a systematic introduction to recent achievements and development in research on the structure of finite non-simple groups, the theory of classes of groups and their applications. In particular, the related systematic theories are considered and some new approaches and research methods are described ? e.g., the F-hypercenter of groups, X-permutable subgroups, subgroup functors, generalized supplementary subgroups, quasi-F-group, and F-cohypercenter for Fitting classes. At the end of each chapter, we provide relevant supplementary information and introduce readers to selected open problems. 606 $aGroup theory 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 615 0$aGroup theory. 615 14$aGroup Theory and Generalizations. 676 $a510 676 $a512.2 700 $aGuo$b Wenbin$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755699 906 $aBOOK 912 $a9910299781403321 996 $aStructure theory for canonical classes of finite groups$91522855 997 $aUNINA