LEADER 03671nam 22006975 450 001 9910299780803321 005 20250609111659.0 010 $a3-319-11475-1 024 7 $a10.1007/978-3-319-11475-0 035 $a(CKB)3710000000324996 035 $a(SSID)ssj0001408282 035 $a(PQKBManifestationID)11787297 035 $a(PQKBTitleCode)TC0001408282 035 $a(PQKBWorkID)11348279 035 $a(PQKB)11468633 035 $a(DE-He213)978-3-319-11475-0 035 $a(MiAaPQ)EBC5578971 035 $z(PPN)25886916X 035 $a(PPN)183148991 035 $a(MiAaPQ)EBC2001766 035 $a(EXLCZ)993710000000324996 100 $a20141229d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to the Representation Theory of Algebras /$fby Michael Barot 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (X, 179 p. 109 illus.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-319-11474-3 320 $aIncludes bibliographical references and indexes. 327 $aMatrix Problems -- Representations of Quivers -- Algebras -- Module Categories -- Elements of Homological Algebra -- The Auslander-Reiten Theory -- Knitting -- Combinatorial Invariants -- Indecomposables and Dimensions. 330 $aThis book gives a general introduction to the theory of representations of algebras. It starts with examples of classification problems of matrices under linear transformations and explains the three common setups: representation of quivers, modules over algebras and additive functors over certain categories. The main part is devoted to (i) module categories, presenting the unicity of the decomposition into indecomposable modules, the Auslander?Reiten theory and the technique of knitting; (ii) the use of combinatorial tools such as dimension vectors and integral quadratic forms; and (iii) deeper theorems such as Gabriel?s Theorem, the trichotomy and the Theorem of Kac ? all accompanied by further examples. Each section includes exercises to facilitate understanding. By keeping the proofs as basic and comprehensible as possible and introducing the three languages at the beginning, this book is suitable for readers from the advanced undergraduate level onwards and enables them to consult related, specific research articles. 606 $aAssociative rings 606 $aRings (Algebra) 606 $aCategories (Mathematics) 606 $aAlgebra, Homological 606 $aAlgebra 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aGeneral Algebraic Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/M1106X 615 0$aAssociative rings. 615 0$aRings (Algebra) 615 0$aCategories (Mathematics) 615 0$aAlgebra, Homological. 615 0$aAlgebra. 615 14$aAssociative Rings and Algebras. 615 24$aCategory Theory, Homological Algebra. 615 24$aGeneral Algebraic Systems. 676 $a512.9 700 $aBarot$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut$0768297 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299780803321 996 $aIntroduction to the Representation Theory of Algebras$91564850 997 $aUNINA