LEADER 04222nam 22008175 450 001 9910299776103321 005 20200629192829.0 010 $a3-319-16250-0 024 7 $a10.1007/978-3-319-16250-8 035 $a(CKB)3710000000379634 035 $a(SSID)ssj0001465680 035 $a(PQKBManifestationID)11859799 035 $a(PQKBTitleCode)TC0001465680 035 $a(PQKBWorkID)11487076 035 $a(PQKB)11199516 035 $a(DE-He213)978-3-319-16250-8 035 $a(MiAaPQ)EBC6312865 035 $a(MiAaPQ)EBC5577975 035 $a(Au-PeEL)EBL5577975 035 $a(OCoLC)905596430 035 $a(PPN)184889790 035 $a(EXLCZ)993710000000379634 100 $a20150317d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aProof Patterns /$fby Mark Joshi 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XIII, 190 p. 24 illus.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-16249-7 327 $aInduction and complete induction -- Double Counting -- The pigeonhole principle -- Divisions -- Contrapositive and contradiction -- Intersection-enclosure and Generation -- Difference of invariants -- Linear dependence, fields and transcendence -- Formal equivalence -- Equivalence extension -- Proof by classification -- Specific-generality -- Diagonal tricks and cardinality -- Connectedness and the Jordan curve theorem -- The Euler characteristic and the classification of regular polyhedra -- Discharging -- The matching problem -- Games -- Analytical patterns -- Counterexamples. 330 $aThis innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as algebra, analysis, topology and number theory are explored. Specific topics examined include game theory, combinatorics, and Euclidean geometry, enabling a broad familiarity. The author, an experienced lecturer and researcher renowned for his innovative view and intuitive style, illuminates a wide range of techniques and examples from duplicating the cube to triangulating polygons to the infinitude of primes to the fundamental theorem of algebra. Intended as a companion for undergraduate students, this text is an essential addition to every aspiring mathematician?s toolkit. 606 $aNumber theory 606 $aGeometry 606 $aCombinatorial analysis 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aTopology 606 $aMathematics?Study and teaching  606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 606 $aMathematics Education$3https://scigraph.springernature.com/ontologies/product-market-codes/O25000 615 0$aNumber theory. 615 0$aGeometry. 615 0$aCombinatorial analysis. 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aTopology. 615 0$aMathematics?Study and teaching . 615 14$aNumber Theory. 615 24$aGeometry. 615 24$aCombinatorics. 615 24$aAnalysis. 615 24$aTopology. 615 24$aMathematics Education. 676 $a511.6 700 $aJoshi$b Mark$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755573 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299776103321 996 $aProof Patterns$91522593 997 $aUNINA