LEADER 04237nam 22007695 450 001 9910299774903321 005 20250402124457.0 010 $a3-642-36005-X 024 7 $a10.1007/978-3-642-36005-3 035 $a(CKB)3710000000436944 035 $a(SSID)ssj0001558599 035 $a(PQKBManifestationID)16183033 035 $a(PQKBTitleCode)TC0001558599 035 $a(PQKBWorkID)14818966 035 $a(PQKB)10837907 035 $a(DE-He213)978-3-642-36005-3 035 $a(MiAaPQ)EBC6315778 035 $a(MiAaPQ)EBC5610821 035 $a(Au-PeEL)EBL5610821 035 $a(OCoLC)910914054 035 $a(PPN)186394160 035 $a(EXLCZ)993710000000436944 100 $a20150602d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMultivariate Statistics $eExercises and Solutions /$fby Wolfgang Karl Härdle, Zden?k Hlávka 205 $a2nd ed. 2015. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2015. 215 $a1 online resource (XXIV, 362 p. 123 illus., 30 illus. in color.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-642-36004-1 320 $aIncludes bibliographical references and index. 327 $aPart I Descriptive Techniques:  Comparison of Batches -- Part II Multivariate Random Variables:  A Short Excursion into Matrix Algebra -- Moving to Higher -- Multivariate -- Theory of the Multinormal --  Theory of Estimation -- Part III Multivariate Techniques: Regression Models -- Variable Selection -- Decomposition of Data Matrices by Factors -- Principal Component Analysis -- Factor Analysis -- Cluster Analysis -- Discriminant Analysis -- Correspondence Analysis -- Canonical Correlation Analysis -- Multidimensional Scaling -- Conjoint Measurement Analysis -- Applications in Finance -- Highly Interactive, Computationally Intensive Techniques -- Data Sets -- References -- Index. 330 $aThe authors present tools and concepts of multivariate data analysis by means of exercises and their solutions. The first part is devoted to graphical techniques. The second part deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The last part introduces a wide variety of exercises in applied multivariate data analysis. The book demonstrates the application of simple calculus and basic multivariate methods in real life situations. It contains altogether more than 250 solved exercises which can assist a university teacher in setting up a modern multivariate analysis course. All computer-based exercises are available in the R language. All R codes and data sets may be downloaded via the quantlet download center  www.quantlet.org or via the Springer webpage. For interactive display of low-dimensional projections of a multivariate data set, we recommend GGobi. 606 $aStatistics 606 $aMathematics$xData processing 606 $aInformation visualization 606 $aData mining 606 $aComputational intelligence 606 $aStatistical Theory and Methods 606 $aComputational Mathematics and Numerical Analysis 606 $aData and Information Visualization 606 $aData Mining and Knowledge Discovery 606 $aComputational Intelligence 615 0$aStatistics. 615 0$aMathematics$xData processing. 615 0$aInformation visualization. 615 0$aData mining. 615 0$aComputational intelligence. 615 14$aStatistical Theory and Methods. 615 24$aComputational Mathematics and Numerical Analysis. 615 24$aData and Information Visualization. 615 24$aData Mining and Knowledge Discovery. 615 24$aComputational Intelligence. 676 $a519.535 700 $aHärdle$b Wolfgang Karl$4aut$4http://id.loc.gov/vocabulary/relators/aut$0732741 702 $aHlávka$b Zden?k$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299774903321 996 $aMultivariate Statistics$92543291 997 $aUNINA