LEADER 04221nam 22007935 450 001 9910299769703321 005 20251103235231.0 010 $a3-319-18991-3 024 7 $a10.1007/978-3-319-18991-8 035 $a(CKB)3710000000436847 035 $a(SSID)ssj0001547026 035 $a(PQKBManifestationID)16140829 035 $a(PQKBTitleCode)TC0001547026 035 $a(PQKBWorkID)14796332 035 $a(PQKB)11039964 035 $a(DE-He213)978-3-319-18991-8 035 $a(MiAaPQ)EBC6312238 035 $a(MiAaPQ)EBC5586873 035 $a(Au-PeEL)EBL5586873 035 $a(OCoLC)911182638 035 $a(PPN)186400284 035 $a(EXLCZ)993710000000436847 100 $a20150610d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aFundamentals of Hopf Algebras /$fby Robert G. Underwood 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XIV, 150 p. 21 illus.) 225 1 $aUniversitext,$x0172-5939 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-319-18990-5 327 $aPreface -- Notation -- 1. Algebras and Coalgebras -- 2. Bialgebras -- 3. Hopf Algebras -- 4. Applications of Hopf Algebras -- Bibliography. 330 $aThis text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author?s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforward applications of the theory to problems that are devised to challenge the reader. Questions for further study are provided after selected exercises.  Most proofs are given in detail, though a few proofs are omitted since they are beyond the scope of this book. 410 0$aUniversitext,$x0172-5939 606 $aAssociative rings 606 $aRings (Algebra) 606 $aCommutative algebra 606 $aCommutative rings 606 $aNumber theory 606 $aComputer science?Mathematics 606 $aComputer science$xMathematics 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aMathematical Applications in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/M13110 615 0$aAssociative rings. 615 0$aRings (Algebra) 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aNumber theory. 615 0$aComputer science?Mathematics. 615 0$aComputer science$xMathematics. 615 14$aAssociative Rings and Algebras. 615 24$aCommutative Rings and Algebras. 615 24$aNumber Theory. 615 24$aMathematical Applications in Computer Science. 676 $a512.55 700 $aUnderwood$b Robert G$g(Robert Gene),$4aut$4http://id.loc.gov/vocabulary/relators/aut$01270983 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299769703321 996 $aFundamentals of Hopf Algebras$94451426 997 $aUNINA