LEADER 03848nam 22007215 450 001 9910299763903321 005 20220610151428.0 010 $a3-0348-0408-3 024 7 $a10.1007/978-3-0348-0408-0 035 $a(CKB)3710000000404002 035 $a(SSID)ssj0001501509 035 $a(PQKBManifestationID)11830604 035 $a(PQKBTitleCode)TC0001501509 035 $a(PQKBWorkID)11446917 035 $a(PQKB)10054099 035 $a(DE-He213)978-3-0348-0408-0 035 $a(MiAaPQ)EBC6315852 035 $a(MiAaPQ)EBC5586847 035 $a(Au-PeEL)EBL5586847 035 $a(OCoLC)1026468378 035 $a(PPN)185489575 035 $a(EXLCZ)993710000000404002 100 $a20150428d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHarmonic and Geometric Analysis /$fby Giovanna Citti, Loukas Grafakos, Carlos Pérez, Alessandro Sarti, Xiao Zhong 205 $a1st ed. 2015. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2015. 215 $a1 online resource (IX, 170 p. 19 illus., 12 illus. in color.) 225 1 $aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0304 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-0348-0407-5 320 $aIncludes bibliographical references and index. 327 $a1 Models of the Visual Cortex in Lie Groups -- 2 Multilinear Calderón?Zygmund Singular Integrals -- 3 Singular Integrals and Weights -- 4 De Giorgi?Nash?Moser Theory. 330 $aThis book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón?Zygmund theory, especially the Lp inequalities for Calderón?Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differential equations in divergence form. 410 0$aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0304 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aDifferential equations, Partial 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aDifferential equations, Partial. 615 14$aAnalysis. 615 24$aPartial Differential Equations. 676 $a515 676 $a515 700 $aCitti$b Giovanna$4aut$4http://id.loc.gov/vocabulary/relators/aut$01062111 701 $aPe?rez$b C$01232576 702 $aGrafakos$b Loukas$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSarti$b Alessandro$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aZhong$b Xiao$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299763903321 996 $aHarmonic and Geometric Analysis$92861958 997 $aUNINA