LEADER 00705nam a2200217 i 4500 001 991004352537807536 005 20241121102123.0 008 241121s1997 it e 000 0 ita 020 $a8836804632 040 $aBibl. Dip.le Aggr. Scienze Giuridiche - Sez. Centro Studi sul Rischio$bita 082 04$a869.8 100 1 $aPessoa, Fernando$0329680 245 10$aMaschere e paradossi /$cFernando Pessoa ; a cura di Perfecto E. Cuadrado 260 $aAntella :$bPassigli,$cc1997 300 $a191 p.$c19 cm 500 $aMáscaras y paradojas 650 4$aLetteratura portoghese 700 1 $aCuadrado, Perfecto E. 912 $a991004352537807536 996 $aMaschere e paradossi$9991521 997 $aUNISALENTO LEADER 04650nam 22008535 450 001 9910299763503321 005 20251116134445.0 010 $a3-319-13915-0 024 7 $a10.1007/978-3-319-13915-9 035 $a(CKB)3710000000404012 035 $a(SSID)ssj0001501644 035 $a(PQKBManifestationID)11830245 035 $a(PQKBTitleCode)TC0001501644 035 $a(PQKBWorkID)11446476 035 $a(PQKB)11448319 035 $a(DE-He213)978-3-319-13915-9 035 $a(MiAaPQ)EBC6312315 035 $a(MiAaPQ)EBC5590871 035 $a(Au-PeEL)EBL5590871 035 $a(OCoLC)908105002 035 $a(PPN)185490271 035 $a(EXLCZ)993710000000404012 100 $a20150413d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aOptimal Interconnection Trees in the Plane $eTheory, Algorithms and Applications /$fby Marcus Brazil, Martin Zachariasen 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XVII, 344 p. 150 illus., 135 illus. in color.) 225 1 $aAlgorithms and Combinatorics,$x0937-5511 ;$v29 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-319-13914-2 327 $aPreface:- 1 Euclidean and Minkowski Steiner Trees -- 2 Fixed Orientation Steiner Trees -- 3 Rectilinear Steiner Trees -- 4 Steiner Trees with Other Costs and Constraints -- 5 Steiner Trees in Graphs and Hypergraphs -- A Appendix. 330 $aThis book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible. 410 0$aAlgorithms and Combinatorics,$x0937-5511 ;$v29 606 $aCombinatorial analysis 606 $aComputer science?Mathematics 606 $aGeometry 606 $aMathematical optimization 606 $aAlgorithms 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aDiscrete Mathematics in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/I17028 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 606 $aOptimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26008 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 615 0$aCombinatorial analysis. 615 0$aComputer science?Mathematics. 615 0$aGeometry. 615 0$aMathematical optimization. 615 0$aAlgorithms. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 14$aCombinatorics. 615 24$aDiscrete Mathematics in Computer Science. 615 24$aGeometry. 615 24$aOptimization. 615 24$aAlgorithms. 615 24$aMathematical and Computational Engineering. 676 $a511.52 700 $aBrazil$b Marcus$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755549 702 $aZachariasen$b Martin$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299763503321 996 $aOptimal Interconnection Trees in the Plane$92523315 997 $aUNINA