LEADER 03540nam 22007335 450 001 9910299754803321 005 20200703085019.0 010 $a3-7091-1791-7 024 7 $a10.1007/978-3-7091-1791-0 035 $a(CKB)3710000000261993 035 $a(EBL)1966790 035 $a(OCoLC)893976426 035 $a(SSID)ssj0001372490 035 $a(PQKBManifestationID)11787116 035 $a(PQKBTitleCode)TC0001372490 035 $a(PQKBWorkID)11304092 035 $a(PQKB)10877112 035 $a(MiAaPQ)EBC1966790 035 $a(DE-He213)978-3-7091-1791-0 035 $z(PPN)258855754 035 $a(PPN)182099458 035 $a(EXLCZ)993710000000261993 100 $a20141013d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aModal Analysis of Nonlinear Mechanical Systems /$fedited by Gaetan Kerschen 205 $a1st ed. 2014. 210 1$aVienna :$cSpringer Vienna :$cImprint: Springer,$d2014. 215 $a1 online resource (346 p.) 225 1 $aCISM International Centre for Mechanical Sciences, Courses and Lectures,$x0254-1971 ;$v555 300 $aDescription based upon print version of record. 311 $a3-7091-1790-9 320 $aIncludes bibliographical references. 327 $aDefinition and fundamental properties of nonlinear normal modes -- Nonlinear normal modes and invariant manifolds -- Nonlinear normal modes and normal form theory -- Nonlinear normal modes in damped-forced systems -- Numerical computation of nonlinear normal modes -- Elements of nonlinear system identification of broad applicability -- Vibration absorption and acoustic mitigation. 330 $aThe book first introduces the concept of nonlinear normal modes (NNMs) and their two main definitions. The fundamental differences between classical linear normal modes (LNMs) and NNMs are explained and illustrated using simple examples. Different methods for computing NNMs from a mathematical model are presented. Both advanced analytical and numerical methods are described. Particular attention is devoted to the invariant manifold and normal form theories. The book also discusses nonlinear system identification. 410 0$aCISM International Centre for Mechanical Sciences, Courses and Lectures,$x0254-1971 ;$v555 606 $aVibration 606 $aDynamical systems 606 $aDynamics 606 $aStatistical physics 606 $aErgodic theory 606 $aVibration, Dynamical Systems, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/T15036 606 $aApplications of Nonlinear Dynamics and Chaos Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P33020 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 615 0$aVibration. 615 0$aDynamical systems. 615 0$aDynamics. 615 0$aStatistical physics. 615 0$aErgodic theory. 615 14$aVibration, Dynamical Systems, Control. 615 24$aApplications of Nonlinear Dynamics and Chaos Theory. 615 24$aDynamical Systems and Ergodic Theory. 676 $a531.0151535 702 $aKerschen$b Gaetan$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299754803321 996 $aModal Analysis of Nonlinear Mechanical Systems$92188126 997 $aUNINA