LEADER 03745nam 22007575 450 001 9910299609703321 005 20200702070853.0 010 $a981-287-432-1 024 7 $a10.1007/978-981-287-432-0 035 $a(CKB)3710000000359232 035 $a(EBL)1998192 035 $a(SSID)ssj0001452206 035 $a(PQKBManifestationID)11859297 035 $a(PQKBTitleCode)TC0001452206 035 $a(PQKBWorkID)11498455 035 $a(PQKB)10235885 035 $a(DE-He213)978-981-287-432-0 035 $a(MiAaPQ)EBC1998192 035 $a(PPN)184495415 035 $a(EXLCZ)993710000000359232 100 $a20150216d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIn Silico Engineering of Disulphide Bonds to Produce Stable Cellulase /$fby Bahram Barati, Iraj Sadegh Amiri 205 $a1st ed. 2015. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2015. 215 $a1 online resource (53 p.) 225 1 $aSpringerBriefs in Applied Sciences and Technology,$x2191-530X 300 $aDescription based upon print version of record. 311 $a981-287-431-3 320 $aIncludes bibliographical references. 327 $aIntroduction of Cellulose and its Application -- Literature Review -- Methodology of Mutant Creation and Molecular Dynamic Simulation -- Results and Discussions -- Conclusions. 330 $aThis Brief highlights different approaches used to create stable cellulase and its use in different fields. Cellulase is an industrial enzyme with a broad range of significant applications in biofuel production and cellulosic waste management. Cellulase 7a from Trichoderma reesei is the most efficient enzyme in the biohydrolysis of cellulose. In order to improve its thermal stability, it can be engineered using a variety of approaches, such as hydrophobic interactions, aromatic interactions, hydrogen bonds, ion pairs and disulfide bridge creation. 410 0$aSpringerBriefs in Applied Sciences and Technology,$x2191-530X 606 $aRenewable energy resources 606 $aCheminformatics 606 $aChemical engineering 606 $aBioinformatics 606 $aComputational biology 606 $aBiochemical engineering 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aComputer Applications in Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C13009 606 $aIndustrial Chemistry/Chemical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/C27000 606 $aComputer Appl. in Life Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/L17004 606 $aBiochemical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/C12029 615 0$aRenewable energy resources. 615 0$aCheminformatics. 615 0$aChemical engineering. 615 0$aBioinformatics. 615 0$aComputational biology. 615 0$aBiochemical engineering. 615 14$aRenewable and Green Energy. 615 24$aComputer Applications in Chemistry. 615 24$aIndustrial Chemistry/Chemical Engineering. 615 24$aComputer Appl. in Life Sciences. 615 24$aBiochemical Engineering. 676 $a621.042 700 $aBarati$b Bahram$4aut$4http://id.loc.gov/vocabulary/relators/aut$0924562 702 $aSadegh Amiri$b Iraj$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910299609703321 996 $aIn Silico Engineering of Disulphide Bonds to Produce Stable Cellulase$92075381 997 $aUNINA