LEADER 04017nam 22005415 450 001 9910299603003321 005 20200630173311.0 010 $a3-319-69442-1 024 7 $a10.1007/978-3-319-69442-9 035 $a(CKB)4100000001039724 035 $a(DE-He213)978-3-319-69442-9 035 $a(MiAaPQ)EBC5123298 035 $a(PPN)221255214 035 $a(EXLCZ)994100000001039724 100 $a20171104d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPiezoelectric Vibration Energy Harvesting $eModeling & Experiments /$fby Sajid Rafique 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XVIII, 172 p. 87 illus., 41 illus. in color.) 311 $a3-319-69440-5 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aIntroduction -- Overview of Vibration Energy Harvesting -- Distributed Parameter Modeling and Experimental Validation -- Modeling of Energy Harvesting Beams using Dynamic Stiffness Method -- A Theoretical Analysis of an ?Electromechanical? Beam Tuned Mass Damper -- Experimental Analysis of an ?Electromechanical? Beam Tuned Mass Damper -- Example of Vibration Suppression of Electronic Box Using Dual Function EH/TVA -- Summary and Future Research. 330 $aThe electromechanical coupling effect introduced by piezoelectric vibration energy harvesting (PVEH) presents serious modeling challenges. This book provides close-form accurate mathematical modeling and experimental  techniques to design and validate dual function PVEH vibration absorbing devices as a solution to mitigate vibration and maximize operational efficiency. It includes in-depth experimental validation of a PVEH beam model based on the analytical modal analysis method (AMAM), precisely identifying  electrical loads that harvest maximum power and  induce maximum electrical damping. The author's detailed analysis will be useful for researchers working in the rapidly emerging field of vibration based energy harvesting, as well as for students investigating electromechanical devices, piezoelectric sensors and actuators, and vibration control engineering. Includes a thorough theoretical and experimental analysis of a PVEH beam or assembly of beams; Provides an in-depth investigation of a dual function piezoelectric vibration energy harvester beam/tuned vibration absorber (PVEH/TVA) or "electromechanical TVA"; Outlines the electromechanical TVA?s potential application to dual-function energy harvesting and vibration control; Establishes a procedure for the exact modeling of PVEH beams, and assemblies of such beams, using the dynamic stiffness matrix (DSM) method. The book contains useful MatLab program codes which model complex equations, providing a deeper and quicker insight of the PVEH as well as the dual function PVEH/TVA systems. 606 $aEnergy harvesting 606 $aOptical materials 606 $aElectronics$xMaterials 606 $aEnergy systems 606 $aEnergy Harvesting$3https://scigraph.springernature.com/ontologies/product-market-codes/117000 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aEnergy Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/115000 615 0$aEnergy harvesting. 615 0$aOptical materials. 615 0$aElectronics$xMaterials. 615 0$aEnergy systems. 615 14$aEnergy Harvesting. 615 24$aOptical and Electronic Materials. 615 24$aEnergy Systems. 676 $a621.042 700 $aRafique$b Sajid$4aut$4http://id.loc.gov/vocabulary/relators/aut$0937882 906 $aBOOK 912 $a9910299603003321 996 $aPiezoelectric Vibration Energy Harvesting$92112835 997 $aUNINA