LEADER 03934nam 22006495 450 001 9910299593003321 005 20200704192450.0 010 $a3-319-12661-X 024 7 $a10.1007/978-3-319-12661-6 035 $a(CKB)4100000000881656 035 $a(DE-He213)978-3-319-12661-6 035 $a(MiAaPQ)EBC5110244 035 $a(PPN)220125899 035 $a(EXLCZ)994100000000881656 100 $a20171023d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGreenhouse Gases and Clay Minerals $eEnlightening Down-to-Earth Road Map to Basic Science of Clay-Greenhouse Gas Interfaces /$fedited by Vyacheslav Romanov 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XV, 187 p. 66 illus., 53 illus. in color.) 225 1 $aGreen Energy and Technology,$x1865-3529 311 $a3-319-12660-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aBackground -- Greenhouse Gases And Climate Change -- Carbon Management: Geomaterials And Geological Formations -- Clay Mineralogy -- Advanced Experimental Techniques In Geochemistry -- Experimental Studies: Molecular Interactions At Clay Interfaces -- Experimental Studies: Clay Swelling -- Classical MD Simulations Of Clay Systems -- Quantum Chemistry Of Clay Interlayer. 330 $aThis book is a systematic compilation of the most recent body of knowledge in the rapidly developing research area of greenhouse gas interaction with clay systems. Unexpected results of the most recent studies ? such as unusually high sorption capacity and sorption hysteresis of swelling clays ?stimulated theoretical activity in this fascinating field. Classical molecular dynamics (MD) explains swelling caused by intercalation of water molecules and to a certain degree of CO2 molecules in clay interlayer. However, unusual frequency shifts in the transient infrared fingerprints of the intercalated molecules and the following accelerated carbonation can be tackled only via quantum mechanical modeling. This book provides a streamlined (from simple to complex) guide to the most advanced research efforts in this field. 410 0$aGreen Energy and Technology,$x1865-3529 606 $aRenewable energy resources 606 $aAir$xPollution 606 $aGeotechnical engineering 606 $aClimatic changes 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aAtmospheric Protection/Air Quality Control/Air Pollution$3https://scigraph.springernature.com/ontologies/product-market-codes/U35010 606 $aGeotechnical Engineering & Applied Earth Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/G37010 606 $aClimate Change/Climate Change Impacts$3https://scigraph.springernature.com/ontologies/product-market-codes/313000 615 0$aRenewable energy resources. 615 0$aAir$xPollution. 615 0$aGeotechnical engineering. 615 0$aClimatic changes. 615 14$aRenewable and Green Energy. 615 24$aRenewable and Green Energy. 615 24$aAtmospheric Protection/Air Quality Control/Air Pollution. 615 24$aGeotechnical Engineering & Applied Earth Sciences. 615 24$aClimate Change/Climate Change Impacts. 676 $a574.526404 702 $aRomanov$b Vyacheslav$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299593003321 996 $aGreenhouse Gases and Clay Minerals$92075365 997 $aUNINA