LEADER 00998cam0-2200289---450- 001 990005726620403321 005 20150915153834.0 035 $a000572662 035 $aFED01000572662 035 $a(Aleph)000572662FED01 035 $a000572662 100 $a19990604d1940----km-y1itay50------ba 101 0 $aita 105 $ay---eef-00--- 200 1 $a<>lingua etrusca come dialetto italico$e(testi, traduzioni interlinearie e commenti)$econ un indice di etimologie in appendice al Vocabolario etimologico della lingua italiana dello stesso autore$fPaolo Ettore Santangelo 210 $aMilano$cTipo-litografia G. Tenconi$d1940 215 $a121 p.$d29 cm 300 $aIl testo è in forma di manoscritto 610 0 $aLingua etrusca 676 $a499.94$v22$zita 700 1$aSantangelo,$bPaolo Ettore$0200576 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a990005726620403321 952 $a499.94 SAN 1$bIst.Glott. s.i.$fFLFBC 959 $aFLFBC 997 $aUNINA LEADER 01234nam--2200421---450- 001 990002697050203316 005 20070206134600.0 010 $a88-7870-016-9 035 $a000269705 035 $aUSA01000269705 035 $a(ALEPH)000269705USA01 035 $a000269705 100 $a20051223d2005----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> religioni e la storia$ea proposito di un metodo$fGiliberto Mazzoleni, Adriano Santiemma 210 $aRoma$cBulzoni$d2005 215 $a161 p.$d21 cm 225 2 $aChi siamo$v39 410 0$12001$aChi siamo$v39 454 1$12001 461 1$1001-------$12001 606 0 $aReligione $zSec. 19.-20. 606 0 $aEtnologia 676 $a306 700 1$aMAZZOLENI,$bGiliberto$0592315 701 1$aSANTIEMMA,$bAdriano$0144574 801 0$aIT$bsalbc$gISBD 912 $a990002697050203316 951 $aII.2. 4460 (XIV 1832)$b180260 L.M.$cXIV$d00126241 959 $aBK 969 $aUMA 979 $aVITALE$b90$c20051223$lUSA01$h1443 979 $aVITALE$b90$c20060124$lUSA01$h1314 979 $aCOPAT4$b90$c20070206$lUSA01$h1346 996 $aReligioni e la storia$91001366 997 $aUNISA LEADER 09040nam 22007695 450 001 9910299585903321 005 20200629195256.0 010 $a3-319-70428-1 024 7 $a10.1007/978-3-319-70428-9 035 $a(CKB)4100000001381490 035 $a(DE-He213)978-3-319-70428-9 035 $a(MiAaPQ)EBC6313138 035 $a(MiAaPQ)EBC5588996 035 $a(Au-PeEL)EBL5588996 035 $a(OCoLC)1066188995 035 $a(PPN)22223069X 035 $a(EXLCZ)994100000001381490 100 $a20171230d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA Finite Element Primer for Beginners $eThe Basics /$fby Tarek I. Zohdi 205 $a2nd ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XIII, 135 p. 41 illus.) 311 $a3-319-70427-3 327 $aIntro -- Preface -- Contents -- List of Figures -- 1 Weighted Residuals and Galerkin's Method for a Generic 1D Problem -- 1.1 Introduction: Weighted Residual Methods -- 1.2 Galerkin's Method -- 1.3 An Overall Framework -- 2 A Model Problem: 1D Elastostatics -- 2.1 Introduction: A Model Problem -- 2.2 Weak Formulations in One Dimension -- 2.3 An Example -- 2.4 Some Restrictions -- 2.5 Remarks on Nonlinear Problems -- 3 A Finite Element Implementation in One Dimension -- 3.1 Introduction -- 3.2 Weak Formulation -- 3.3 FEM Approximation -- 3.4 Construction of FEM Basis Functions -- 3.5 Integration and Gaussian Quadrature -- 3.5.1 An Example -- 3.6 Global/Local Transformations -- 3.7 Differential Properties of Shape Functions -- 3.8 Post-Processing -- 3.9 A Detailed Example -- 3.9.1 Weak Form -- 3.9.2 Formation of the Discrete System -- 3.9.3 Applying Boundary Conditions -- 3.9.4 Massive Data Storage Reduction -- 3.10 Quadratic Elements -- 4 Accuracy of the Finite Element Method in One Dimension -- 4.1 Introduction -- 4.2 The ``Best Approximation'' Theorem -- 4.3 The Principle of Minimum Potential Energy -- 4.4 Simple Estimates for Adequate FEM Meshes -- 4.5 Local Mesh Refinement -- 5 Iterative Solutions Schemes -- 5.1 Introduction: Minimum Principles and Krylov Methods -- 5.1.1 Numerical Linear Algebra -- 5.1.2 Krylov Searches and Minimum Principles -- 6 Weak Formulations in Three Dimensions -- 6.1 Introduction -- 6.2 Hilbertian Sobolev Spaces -- 6.3 The Principle of Minimum Potential Energy -- 6.4 Complementary Principles -- 7 A Finite Element Implementation in Three Dimensions -- 7.1 Introduction -- 7.2 FEM Approximation -- 7.3 Global/Local Transformations -- 7.4 Mesh Generation and Connectivity Functions -- 7.5 Warning: Restrictions on Elements -- 7.5.1 Good and Bad Elements: Examples -- 7.6 Three-Dimensional Shape Functions. 327 $a7.7 Differential Properties of Shape Functions -- 7.8 Differentiation in the Referential Coordinates -- 7.8.1 Implementation Issues -- 7.8.2 An Example of the Storage Scaling -- 7.9 Surface Jacobians and Nanson's Formula -- 7.10 Post-Processing -- 8 Accuracy of the Finite Element Method in Three Dimensions -- 8.1 Introduction -- 8.2 The ``Best Approximation'' Theorem -- 8.3 Simple Estimates for Adequate FEM Meshes Revisited for Three Dimensions -- 8.4 Local Error Estimation and Adaptive Mesh Refinement -- 8.4.1 A Posteriori Recovery Methods -- 8.4.2 A Posteriori Residual Methods -- 9 Time-Dependent Problems -- 9.1 Introduction -- 9.2 Generic Time Stepping -- 9.3 Application to the Continuum Formulation -- 10 Summary and Advanced Topics -- Appendix A Elementary Mathematical Concepts -- A.1 Vector Products -- A.2 Vector Calculus -- A.3 Interpretation of the Gradient of Functionals -- A.4 Matrix Manipulations -- A.4.1 Determinant -- A.4.2 Eigenvalues -- A.4.3 Coordinate Transformations -- Appendix B Basic Continuum Mechanics -- B.1 Deformations -- B.2 Equilibrium/Kinetics of Solid Continua -- B.2.1 Postulates on Volume and Surface Quantities -- B.2.2 Balance Law Formulations -- B.3 Referential Descriptions of Balance Laws and Nanson's Formula -- B.4 The First Law of Thermodynamics/An Energy Balance -- B.5 Linearly Elastic Constitutive Equations -- B.5.1 The Infinitesimal Strain Case -- B.5.2 Linear Elastic Constitutive Laws -- B.5.3 Material Component Interpretation -- B.6 Related Physical Concepts -- B.6.1 Heat Conduction -- B.6.2 Solid-State Diffusion-Reaction -- B.6.3 Conservation Law Families -- Appendix C Convergence of Recursive Iterative Schemes -- Appendix D Selected in-Class Exam Problems -- D.1 Sample Problem 1 -- D.2 Sample Problem 2 -- D.3 Sample Problem 3 -- D.4 Sample Problem 4 -- D.5 Sample Problem 5 -- D.6 Sample Problem 6. 327 $aD.7 Sample Problem 7 -- D.8 Sample Problem 8 -- D.9 Sample Problem 9 -- D.10 Sample Problem 10 -- D.11 Sample Problem 11 -- D.12 Sample Problem 12 -- D.13 Sample Problem 13 -- D.14 Sample Problem 14 -- D.15 Sample Problem 15 -- D.16 Sample Problem 16 -- D.17 Sample Problem 17 -- Appendix E Selected Computer Projects -- E.1 Assignment Format -- E.2 Sample Project 1: The Basics of FEM -- E.3 Sample Project 2: Higher-Order Elements -- E.4 Sample Project 3: Potential and Efficient Solution Techniques -- E.5 Sample Project 4: Error Estimation and Adaptive Meshing Using the Exact Solution as a Test -- E.6 Sample Project 5: 3D Formulations for Elasticity -- E.7 Sample Project 6: Implementation of the Finite Element Method in 2D -- E.8 Sample Project 7: Time-Dependent Problems. 330 $a The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:   ?  Weighted residual methods and Galerkin approximations, ?  A model problem for one-dimensional linear elastostatics, ?  Weak formulations in one dimension, ?  Minimum principles in one dimension, ?  Error estimation in one dimension, ?  Construction of Finite Element basis functions in one dimension, ?  Gaussian Quadrature, ?  Iterative solvers and element by element data structures, ?  A model problem for three-dimensional linear elastostatics, ?  Weak formulations in three dimensions, ?  Basic rules for element construction in three-dimensions, ?  Assembly of the system and solution schemes, ?  An introduction to time-dependent problems and ?  An introduction to rapid computation based on domain decomposition    and basic parallel processing.   The approach is to introduce the basic concepts first in one-dimension, then move on to three-dimensions. A relatively informal style is adopted. This primer is intended to be a ?starting point?, which can be later augmented by the large array of rigorous, detailed, books in the area of Finite Element analysis. In addition to overall improvements to the first edition, this second edition also adds several carefully selected in-class exam problems from exams given over the last 15 years at UC Berkeley,  as well as a large number of take-home computer projects. These problems and projects are designed to be aligned to the theory provided in the main text of this primer. . 606 $aMechanics 606 $aMechanics, Applied 606 $aComputer science$xMathematics 606 $aComputational complexity 606 $aPhysics 606 $aFluid mechanics 606 $aMathematical models 606 $aSolid Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15010 606 $aComputational Science and Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/M14026 606 $aComplexity$3https://scigraph.springernature.com/ontologies/product-market-codes/T11022 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aEngineering Fluid Dynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15044 606 $aMathematical Modeling and Industrial Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M14068 615 0$aMechanics. 615 0$aMechanics, Applied. 615 0$aComputer science$xMathematics. 615 0$aComputational complexity. 615 0$aPhysics. 615 0$aFluid mechanics. 615 0$aMathematical models. 615 14$aSolid Mechanics. 615 24$aComputational Science and Engineering. 615 24$aComplexity. 615 24$aNumerical and Computational Physics, Simulation. 615 24$aEngineering Fluid Dynamics. 615 24$aMathematical Modeling and Industrial Mathematics. 676 $a620.00151535 700 $aZohdi$b Tarek I$4aut$4http://id.loc.gov/vocabulary/relators/aut$0473670 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299585903321 996 $aA Finite Element Primer for Beginners$92523017 997 $aUNINA