LEADER 03950nam 22006615 450 001 9910299584103321 005 20200703010551.0 010 $a981-10-4687-5 024 7 $a10.1007/978-981-10-4687-2 035 $a(CKB)4100000000586843 035 $a(DE-He213)978-981-10-4687-2 035 $a(MiAaPQ)EBC5061492 035 $a(PPN)204531888 035 $a(EXLCZ)994100000000586843 100 $a20170927d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTopology Optimization Theory for Laminar Flow $eApplications in Inverse Design of Microfluidics /$fby Yongbo Deng, Yihui Wu, Zhenyu Liu 205 $a1st ed. 2018. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2018. 215 $a1 online resource (XI, 250 p. 181 illus., 97 illus. in color.) 311 $a981-10-4686-7 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Topology optimization for unsteady flows -- Topology optimization for fluid flows with body forces -- Topology optimization for two-phase flows -- Combination of topology optimization and optimal control method -- Inverse design of microfluidics using topology optimization. 330 $aThis book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context ofmicrofluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices. 606 $aFluid mechanics 606 $aAmorphous substances 606 $aComplex fluids 606 $aMathematical optimization 606 $aPhysics 606 $aNanotechnology 606 $aEngineering Fluid Dynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15044 606 $aSoft and Granular Matter, Complex Fluids and Microfluidics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25021 606 $aOptimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26008 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aNanotechnology and Microengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T18000 615 0$aFluid mechanics. 615 0$aAmorphous substances. 615 0$aComplex fluids. 615 0$aMathematical optimization. 615 0$aPhysics. 615 0$aNanotechnology. 615 14$aEngineering Fluid Dynamics. 615 24$aSoft and Granular Matter, Complex Fluids and Microfluidics. 615 24$aOptimization. 615 24$aNumerical and Computational Physics, Simulation. 615 24$aNanotechnology and Microengineering. 676 $a620.1064 700 $aDeng$b Yongbo$4aut$4http://id.loc.gov/vocabulary/relators/aut$01061812 702 $aWu$b Yihui$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aLiu$b Zhenyu$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910299584103321 996 $aTopology Optimization Theory for Laminar Flow$92520237 997 $aUNINA