LEADER 04240nam 22006975 450 001 9910299555703321 005 20200703223553.0 010 $a3-319-04010-3 024 7 $a10.1007/978-3-319-04010-3 035 $a(CKB)3710000000089127 035 $a(EBL)1698333 035 $a(OCoLC)881161831 035 $a(SSID)ssj0001161072 035 $a(PQKBManifestationID)11624886 035 $a(PQKBTitleCode)TC0001161072 035 $a(PQKBWorkID)11122245 035 $a(PQKB)10982578 035 $a(MiAaPQ)EBC1698333 035 $a(DE-He213)978-3-319-04010-3 035 $a(PPN)176750568 035 $a(EXLCZ)993710000000089127 100 $a20140219d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems /$fby William G. Gray, Cass T. Miller 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (609 p.) 225 1 $aAdvances in Geophysical and Environmental Mechanics and Mathematics,$x1866-8348 300 $aDescription based upon print version of record. 311 $a3-319-04009-X 320 $aIncludes bibliographical references and index. 327 $aChapter 1 Elements of Thermodynamically Constrained Averaging Theory -- Chapter 2 Microscale Conservation Principles -- Chapter 3 Microscale Thermodynamics -- Chapter 4 Microscale Equilibrium Conditions -- Chapter 5 Microscale Closure for a Fluid Phase -- Chapter 6 Macroscale Conservation Principles -- Chapter 7 Macroscale Thermodynamics -- Chapter 8 Evolution Equations -- Chapter 9 Single-Fluid-Phase Flow -- Chapter 10 Single-Fluid-Phase Species Transport -- Chapter 11 Two-Phase Flow -- Chapter 12 Modeling Approach and Extensions -- Appendix A Considerations on Calculus of Variations -- Appendix B Derivations of Averaging Theorems -- Appendix C Constrained Entropy Inequality Derivations -- Index. 330 $aThermodynamically constrained averaging theory provides a consistent method for upscaling conservation and thermodynamic equations for application in the study of porous medium systems.  The method provides dynamic equations for phases, interfaces, and common curves that are closely based on insights from the entropy inequality. All larger scale variables in the equations are explicitly defined in terms of their microscale precursors, facilitating the determination of important parameters and macroscale state equations based on microscale experimental and computational analysis. The method requires that all assumptions that lead to a particular equation form be explicitly indicated, a restriction which is useful in ascertaining the range of applicability of a model as well as potential sources of error and opportunities to improve the analysis. 410 0$aAdvances in Geophysical and Environmental Mechanics and Mathematics,$x1866-8348 606 $aGeophysics 606 $aGeology?Statistical methods 606 $aMineralogy 606 $aThermodynamics 606 $aGeophysics/Geodesy$3https://scigraph.springernature.com/ontologies/product-market-codes/G18009 606 $aQuantitative Geology$3https://scigraph.springernature.com/ontologies/product-market-codes/G17030 606 $aMineralogy$3https://scigraph.springernature.com/ontologies/product-market-codes/G38000 606 $aThermodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21050 615 0$aGeophysics. 615 0$aGeology?Statistical methods. 615 0$aMineralogy. 615 0$aThermodynamics. 615 14$aGeophysics/Geodesy. 615 24$aQuantitative Geology. 615 24$aMineralogy. 615 24$aThermodynamics. 676 $a620.116015118 700 $aGray$b William G$4aut$4http://id.loc.gov/vocabulary/relators/aut$0447822 702 $aMiller$b Cass T$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910299555703321 996 $aIntroduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems$92501963 997 $aUNINA