LEADER 04254nam 22008175 450 001 9910299488103321 005 20200630151844.0 010 $a3-319-05245-4 024 7 $a10.1007/978-3-319-05245-8 035 $a(CKB)3710000000093968 035 $a(EBL)1698351 035 $a(OCoLC)880449552 035 $a(SSID)ssj0001186848 035 $a(PQKBManifestationID)11787418 035 $a(PQKBTitleCode)TC0001186848 035 $a(PQKBWorkID)11240698 035 $a(PQKB)10054039 035 $a(MiAaPQ)EBC1698351 035 $a(DE-He213)978-3-319-05245-8 035 $a(PPN)177822937 035 $a(EXLCZ)993710000000093968 100 $a20140313d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChemical Optimization Algorithm for Fuzzy Controller Design /$fby Leslie Astudillo, Patricia Melin, Oscar Castillo 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (81 p.) 225 1 $aSpringerBriefs in Computational Intelligence,$x2625-3704 300 $aDescription based upon print version of record. 311 $a3-319-05244-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aIntroduction -- Theory and Background -- Chemical Definitions -- The Proposed Chemical Reaction Algorithm -- Application Problems -- Simulation Results -- Conclusions. 330 $aIn this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application. 410 0$aSpringerBriefs in Computational Intelligence,$x2625-3704 606 $aComputational intelligence 606 $aControl engineering 606 $aChemistry, Physical and theoretical 606 $aRobotics 606 $aAutomation 606 $aArtificial intelligence 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aControl and Systems Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/T19010 606 $aTheoretical and Computational Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C25007 606 $aRobotics and Automation$3https://scigraph.springernature.com/ontologies/product-market-codes/T19020 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 615 0$aComputational intelligence. 615 0$aControl engineering. 615 0$aChemistry, Physical and theoretical. 615 0$aRobotics. 615 0$aAutomation. 615 0$aArtificial intelligence. 615 14$aComputational Intelligence. 615 24$aControl and Systems Theory. 615 24$aTheoretical and Computational Chemistry. 615 24$aRobotics and Automation. 615 24$aArtificial Intelligence. 676 $a006.3 700 $aAstudillo$b Leslie$4aut$4http://id.loc.gov/vocabulary/relators/aut$0866746 702 $aMelin$b Patricia$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aCastillo$b Oscar$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299488103321 996 $aChemical Optimization Algorithm for Fuzzy Controller Design$91934740 997 $aUNINA