LEADER 04184nam 22007695 450 001 9910299486603321 005 20200704224327.0 010 $a3-319-05053-2 024 7 $a10.1007/978-3-319-05053-9 035 $a(CKB)3710000000095003 035 $a(DE-He213)978-3-319-05053-9 035 $a(SSID)ssj0001186882 035 $a(PQKBManifestationID)11976569 035 $a(PQKBTitleCode)TC0001186882 035 $a(PQKBWorkID)11243746 035 $a(PQKB)10242272 035 $a(MiAaPQ)EBC6312989 035 $a(MiAaPQ)EBC1698349 035 $a(Au-PeEL)EBL1698349 035 $a(CaPaEBR)ebr10983290 035 $a(OCoLC)877823149 035 $a(PPN)177825235 035 $a(EXLCZ)993710000000095003 100 $a20140331d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFundamental Algorithms in Computational Fluid Dynamics /$fby Thomas H. Pulliam, David W. Zingg 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (XII, 211 p. 54 illus.) 225 1 $aScientific Computation,$x1434-8322 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-05052-4 327 $aIntroduction -- Background -- Overview and Roadmap -- Fundamentals -- Model Equations -- Finite-Difference Methods -- The Semi-Discrete Approach -- Finite-Volume Methods -- Numerical Dissipation and Upwind Schemes -- Time-Marching Methods for ODEs -- Stability Analysis -- Governing Equations -- The Euler and Navier-Stokes Equations -- The Reynolds-Averaged Navier-Stokes Equations. 330 $aIntended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course, and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly. 410 0$aScientific Computation,$x1434-8322 606 $aFluid mechanics 606 $aFluids 606 $aPhysics 606 $aAerospace engineering 606 $aAstronautics 606 $aEngineering Fluid Dynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15044 606 $aFluid- and Aerodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21026 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aAerospace Technology and Astronautics$3https://scigraph.springernature.com/ontologies/product-market-codes/T17050 615 0$aFluid mechanics. 615 0$aFluids. 615 0$aPhysics. 615 0$aAerospace engineering. 615 0$aAstronautics. 615 14$aEngineering Fluid Dynamics. 615 24$aFluid- and Aerodynamics. 615 24$aNumerical and Computational Physics, Simulation. 615 24$aAerospace Technology and Astronautics. 676 $a620.1064 700 $aPulliam$b Thomas H$4aut$4http://id.loc.gov/vocabulary/relators/aut$0726097 702 $aZingg$b David W$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299486603321 996 $aFundamental Algorithms in Computational Fluid Dynamics$92283022 997 $aUNINA