LEADER 04023nam 22008175 450 001 9910298617103321 005 20200707023925.0 010 $a4-431-55384-3 024 7 $a10.1007/978-4-431-55384-7 035 $a(CKB)3710000000452234 035 $a(EBL)4178992 035 $a(SSID)ssj0001534688 035 $a(PQKBManifestationID)11820807 035 $a(PQKBTitleCode)TC0001534688 035 $a(PQKBWorkID)11495005 035 $a(PQKB)11591864 035 $a(DE-He213)978-4-431-55384-7 035 $a(MiAaPQ)EBC4178992 035 $a(PPN)187687323 035 $a(EXLCZ)993710000000452234 100 $a20150723d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFabrication of Heat-Resistant and Plastic-Formable Silicon Nitride /$fby Toshiyuki Nishimura, Xin Xu 205 $a1st ed. 2015. 210 1$aTokyo :$cSpringer Japan :$cImprint: Springer,$d2015. 215 $a1 online resource (53 p.) 225 1 $aNIMS Monographs,$x2197-8891 300 $aDescription based upon print version of record. 311 $a4-431-55383-5 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction: Deformation of Silicon Nitride at High Temperatures -- Preparation of nanosize silicon-nitride-based ceramics and their superplasticity -- Grain Boundary Control to Obtain Heat-Resistant Silicon Nitride -- Conclusions. 330 $aIn this book, improvements in the heat resistance of silicon nitride (Si3N4) ceramics using grain boundary control and in plasticity at high temperatures using grain size control in order to reduce the cost of shaping Si3N4 are described.   The heat resistance of Si3N4 is improved by mixing a slight amount of sintering additive as an impurity into the original material powder. The author presents his findings on the high heat resistance of Si3N4.   The author also develops a new fabrication method for Si3N4 nano-ceramics that produces high plastic formability. The method developed offers two improved points in grinding and sintering processes. The author found that the plastic formability of Si3N4 nanoceramics is dependent on load stress; the results of his research are detailed in this book. 410 0$aNIMS Monographs,$x2197-8891 606 $aCeramics 606 $aGlass 606 $aComposites (Materials) 606 $aComposite materials 606 $aNanotechnology 606 $aSolid state physics 606 $aStructural materials 606 $aCeramics, Glass, Composites, Natural Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z18000 606 $aNanotechnology$3https://scigraph.springernature.com/ontologies/product-market-codes/Z14000 606 $aSolid State Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25013 606 $aNanotechnology and Microengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T18000 606 $aStructural Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z11000 615 0$aCeramics. 615 0$aGlass. 615 0$aComposites (Materials). 615 0$aComposite materials. 615 0$aNanotechnology. 615 0$aSolid state physics. 615 0$aStructural materials. 615 14$aCeramics, Glass, Composites, Natural Materials. 615 24$aNanotechnology. 615 24$aSolid State Physics. 615 24$aNanotechnology and Microengineering. 615 24$aStructural Materials. 676 $a666 700 $aNishimura$b Toshiyuki$4aut$4http://id.loc.gov/vocabulary/relators/aut$0994061 702 $aXu$b Xin$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910298617103321 996 $aFabrication of Heat-Resistant and Plastic-Formable Silicon Nitride$92276635 997 $aUNINA