LEADER 04382nam 22007695 450 001 9910298600503321 005 20200703001825.0 010 $a3-319-93928-9 024 7 $a10.1007/978-3-319-93928-5 035 $a(CKB)3810000000358883 035 $a(MiAaPQ)EBC5441143 035 $a(DE-He213)978-3-319-93928-5 035 $a(PPN)229494854 035 $a(EXLCZ)993810000000358883 100 $a20180630d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPiezo-Active Composites $eMicrogeometry?Sensitivity Relations /$fby Vitaly Yu. Topolov, Christopher R. Bowen, Paolo Bisegna 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (189 pages) 225 1 $aSpringer Series in Materials Science,$x0933-033X ;$v271 311 $a3-319-93927-0 327 $aPreface -- Piezoelectric Medium and Piezoelectric Sensitivity -- Effective Piezoelectric Coefficients dij*: From Microgeometry to Anisotropy -- Microgeometry of Composites and Their Piezoelectric Coefficients gij* -- Piezoelectric Coefficients eij* and dij*: Combination of Properties at Specific Microgeometry -- Piezoelectric Coefficients eij* and hij*: Other Combination of Properties -- Ways to Improve Piezoelectric Sensitivity of Modern Piezo-active Composites. . 330 $aThis book is devoted to the systematic description of the role of microgeometry of modern piezo-active composites in the formation of their piezoelectric sensitivity. In five chapters, the authors analyse kinds of piezoelectric sensitivity for piezo-active composites with specific connectivity patterns and links between the microgeometric feature and piezoelectric response. Among connectivity elements to be discussed, of interest are 2-2, 1-3, 1-1, and 0-3. The role of components and microgeometric factors is discussed in the context of the piezoelectric properties and their anisotropy in the composites. Interrelations between different types of the piezoelectric coefficients are highlighted. The monograph fills a gap in piezoelectric materials science and provides readers with data on the piezoelectric performance of novel composite materials that are suitable for sensor, transducer, hydroacoustic, energy-harvesting, and other applications. 410 0$aSpringer Series in Materials Science,$x0933-033X ;$v271 606 $aOptical materials 606 $aElectronic materials 606 $aMicrowaves 606 $aOptical engineering 606 $aSemiconductors 606 $aCeramics 606 $aGlass 606 $aComposites (Materials) 606 $aComposite materials 606 $aEnergy harvesting 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aMicrowaves, RF and Optical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T24019 606 $aSemiconductors$3https://scigraph.springernature.com/ontologies/product-market-codes/P25150 606 $aCeramics, Glass, Composites, Natural Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z18000 606 $aEnergy Harvesting$3https://scigraph.springernature.com/ontologies/product-market-codes/117000 615 0$aOptical materials. 615 0$aElectronic materials. 615 0$aMicrowaves. 615 0$aOptical engineering. 615 0$aSemiconductors. 615 0$aCeramics. 615 0$aGlass. 615 0$aComposites (Materials). 615 0$aComposite materials. 615 0$aEnergy harvesting. 615 14$aOptical and Electronic Materials. 615 24$aMicrowaves, RF and Optical Engineering. 615 24$aSemiconductors. 615 24$aCeramics, Glass, Composites, Natural Materials. 615 24$aEnergy Harvesting. 676 $a537.2446 700 $aTopolov$b Vitaly Yu$4aut$4http://id.loc.gov/vocabulary/relators/aut$0955541 702 $aBowen$b Christopher R$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aBisegna$b Paolo$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910298600503321 996 $aPiezo-Active Composites$92162320 997 $aUNINA