LEADER 03634nam 22006375 450 001 9910298585403321 005 20200629174729.0 010 $a981-10-7263-9 024 7 $a10.1007/978-981-10-7263-5 035 $a(CKB)4340000000223679 035 $a(DE-He213)978-981-10-7263-5 035 $a(MiAaPQ)EBC5178258 035 $a(PPN)221249206 035 $a(EXLCZ)994340000000223679 100 $a20171129d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMaterials Development for Active/Passive Components of a Supercapacitor $eBackground, Present Status and Future Perspective /$fby Aneeya K. Samantara, Satyajit Ratha 205 $a1st ed. 2018. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2018. 215 $a1 online resource (XI, 48 p. 11 illus.) 225 1 $aSpringerBriefs in Materials,$x2192-1091 311 $a981-10-7262-0 320 $aIncludes bibliographical references at the end of each chapters. 327 $aChapter 1. Introduction -- Chapter 2. Historical background and present status of the Supercapacitors -- Chapter 3. Components of Supercapacitor -- Chapter 4. Asymmetric and Hybrid Supercapacitor -- Chapter 5. Trend and scope beyond traditional supercapacitors -- Chapter 6. References. 330 $aThis brief deals with various forms of supercapacitors starting from traditional carbon based supercapacitors to advanced next generation hybrid supercapacitors. The primary focus is to investigate the successive evolution in the core components of a typical supercapacitor which will bring significant observations regarding their feasibility and overall impact on the charge storage capacity so as to reach at par with the current battery technology. The authors present a critical review of the current collectors, electrode materials and electrolytic components which have distinctive impact on both the power and energy density of a supercapacitor. Emerging trends in the fabrication of hybrid supercapacitor technology bring together the exceptional power density of a double layer capacitor and energy density of a rechargeable battery, which promises a brighter future for the electrical energy storage system. 410 0$aSpringerBriefs in Materials,$x2192-1091 606 $aMaterials science 606 $aForce and energy 606 $aElectrochemistry 606 $aEnergy storage 606 $aEnergy Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z21000 606 $aElectrochemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C21010 606 $aEnergy Storage$3https://scigraph.springernature.com/ontologies/product-market-codes/116000 606 $aCharacterization and Evaluation of Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z17000 615 0$aMaterials science. 615 0$aForce and energy. 615 0$aElectrochemistry. 615 0$aEnergy storage. 615 14$aEnergy Materials. 615 24$aElectrochemistry. 615 24$aEnergy Storage. 615 24$aCharacterization and Evaluation of Materials. 676 $a621.315 700 $aSamantara$b Aneeya K$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767921 702 $aRatha$b Satyajit$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910298585403321 996 $aMaterials Development for Active$92513977 997 $aUNINA