LEADER 03937nam 22006855 450 001 9910298417603321 005 20200703015703.0 010 $a3-319-72377-4 024 7 $a10.1007/978-3-319-72377-8 035 $a(CKB)4100000002892186 035 $a(MiAaPQ)EBC5441108 035 $a(DE-He213)978-3-319-72377-8 035 $a(PPN)225553198 035 $a(EXLCZ)994100000002892186 100 $a20180316d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematica for Bioinformatics$b[electronic resource] $eA Wolfram Language Approach to Omics /$fby George Mias 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (xvi, 384 pages) $cillustration 311 $a3-319-72376-6 320 $aIncludes bibliographical references and index. 327 $a1 Introduction to Bioinformatics -- 2. A Mathematica Primer for Bioinformaticians -- 3. Statistics for Genomic Analysis -- 4. Genomic Sequences -- 5. Databases -- 6. Transcriptomics -- 7. Proteomics -- 8. Metabolomics -- 9. Systems Biology -- 10. Networks -- 11. Time Series Analysis -- 12. Omics Integration and Systems Medicine -- 13. Bioinformatics Development with Mathematica. 330 $aThis book offers a comprehensive introduction to using Mathematica and the Wolfram Language for Bioinformatics. The chapters build gradually from basic concepts and the introduction of the Wolfram Language and coding paradigms in Mathematica, to detailed worked examples derived from typical research applications using Wolfram Language code. The coding examples range from basic sequence analysis, accessing genomic databases, and differential gene expression, to time series analysis of longitudinal omics experiments, multi-omics integration and building dynamic interactive bioinformatics tools using the Wolfram Language. The topics address the daily bioinformatics needs of a broad audience: experimental users looking to understand and visualize their data, beginner bioinformaticians acquiring coding expertise in providing biological research solutions, and practicing expert bioinformaticians working on omics who wish to expand their toolset to include the Wolfram Language. 606 $aBioinformatics  606 $aComputational biology  606 $aMetabolism 606 $aMicroarrays 606 $aSystems biology 606 $aBioinformatics 606 $aBiostatistics 606 $aComputer Appl. in Life Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/L17004 606 $aMetabolomics$3https://scigraph.springernature.com/ontologies/product-market-codes/L15030 606 $aMicroarrays$3https://scigraph.springernature.com/ontologies/product-market-codes/B12050 606 $aSystems Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/L15010 606 $aComputational Biology/Bioinformatics$3https://scigraph.springernature.com/ontologies/product-market-codes/I23050 606 $aBiostatistics$3https://scigraph.springernature.com/ontologies/product-market-codes/L15020 615 0$aBioinformatics . 615 0$aComputational biology . 615 0$aMetabolism. 615 0$aMicroarrays. 615 0$aSystems biology. 615 0$aBioinformatics. 615 0$aBiostatistics. 615 14$aComputer Appl. in Life Sciences. 615 24$aMetabolomics. 615 24$aMicroarrays. 615 24$aSystems Biology. 615 24$aComputational Biology/Bioinformatics. 615 24$aBiostatistics. 676 $a570.285 700 $aMias$b George$4aut$4http://id.loc.gov/vocabulary/relators/aut$01059863 906 $aBOOK 912 $a9910298417603321 996 $aMathematica for Bioinformatics$92508909 997 $aUNINA